Maintaining the Size of LZ77 on Semi-dynamic Strings

<u>Hideo Bannai</u> Panagiotis Charalampopoulos Jakub Radoszewski

LZ77 [Ziv&Lempel 1977]

LZ77 factorization

Greedy partitioning of string into *phrases*:

- first occurrence of symbol
- longest prefix of the rest, that has prev. occ.

<u>Example</u>

One of the smallest expressions efficiently computable
Size of LZ77 = # of phrases z : measure of compression
We will require *src* to take *right-most* previous occurrence

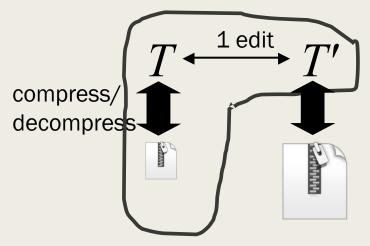
 \rightarrow (0, c)

 \rightarrow (len, src)

Motivation

Compression sensitivity [Akagi et al. 2023]

- How much can the size of LZ77 (or other compressed representations) change after an edit operation?
- Showed Upper/Lower bounds of additive/multiplicative change of various repetitiveness measures under ins/del/sub operations
- → Other operations? (rotation?)
- \rightarrow Can we exploit this to get smaller representation?



Main Results

Maintain LZ77 size in semi-dynamic setting:

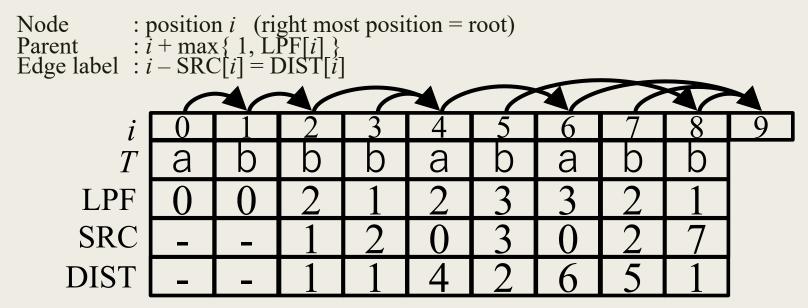
- pop_front: delete first symbol
- push_back: append given symbol
- in $O(\sqrt{n} \log^2 n)$ amortized time for updates using O(n) space

Corollary:

- $O(n\sqrt{n}\log^2 n)$ time algorithm for computing most compressible rotation
 - **D** $O(n^2)$ time is straightforward
 - □ substring compression queries compute in $\tilde{O}(Z)$ time: Z = total number of LZ77 factors in all rotations (still quadratic in worst case)
- Bounds for sensitivity of LZ77 for rotation operation (1 pop_front and 1 push_back)

Longest Previous Factor (LPF) Tree

Main Idea: Maintain LPF tree

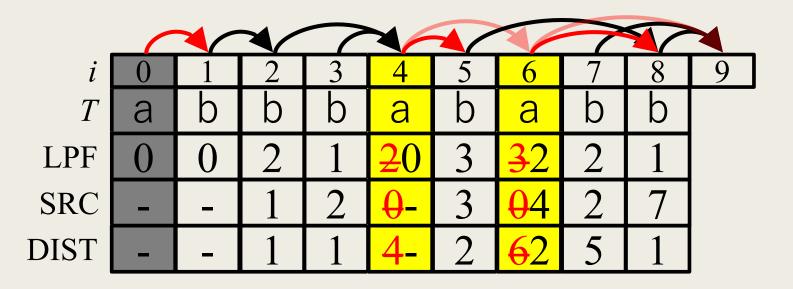


- # of edges on path from 0 to n (root) is LZ77 size.
- Use Link/cut trees: will allow update/path length queries in O(log *n*) time.
- Incoming edges come from range of consecutive positions.
 - range of consecutive incoming edges can be moved by simulating RB-tree split/merge with Link/cut trees with $O(\log n)$ time overhead.
- $O(\sqrt{n})$ updates will allow us to get $O(\sqrt{n} \log^2 n)$ time

CPM2024@Fukuoka

Combinatorial Properties (1)

What can change with pop_front?



Only LPFs whose right most occurrence is at the beginning of the string can change

Combinatorial Properties (prefix LPF occ)

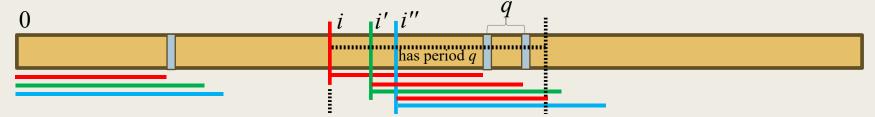
<u>Claim</u>

For any string, the number of right-most LPF occurrences that are at the beginning of the string is $O(\sqrt{n})$.

<u>Proof</u>

For $0 \le i \le i'$, right-most LPF occurrence at beginning implies LPF[*i*] \le LPF[*i'*].

Show: $\forall i$, with SRC[*i*] = 0, at most one $i' \in (i, i+LPF[i])$ with SRC[*i'*] = 0.

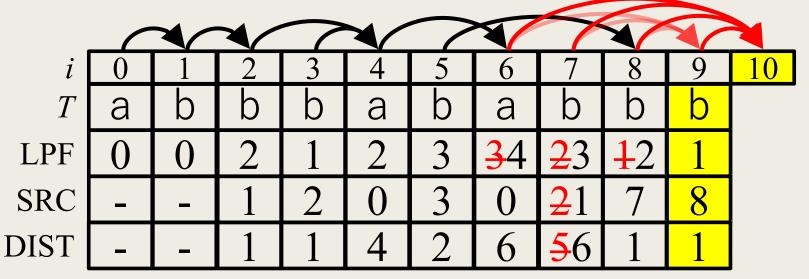


T[i..i''+LPF[i]) is periodic with period q = i' - i. (By periodicity lemma: min period is divisor of q, and occurrences of T[i..i+LPF[i]) form arithmetic progression)

Therefore T[0..LPF[i]] = T[i..i+LPF[i]], which contradicts that T[i..i+LPF[i]) is longest.

Combinatorial Properties (2)

What can change with push_back?



LPFs that are suffixes (i.e. reach the root) can change by extending to the new root

- $\Theta(n)$ edges may need to change parents, but they are consecutive and can be done in a batch
- How to maintain DIST values?

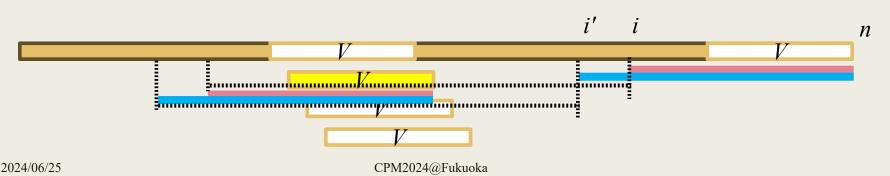
distinct distances for suffix LPFs

<u>Claim</u>

DIST[*i*] of suffix LPFs (i + LPF[i] = n) form a non-increasing sequence with $O(\sqrt{n})$ different values.

Proof

- Right-most occurrence of shorter suffix leads to non-increasing distance.
- For suffixes shorter than $\sqrt{n} \rightarrow$ at most \sqrt{n} different DIST values.
- For longer suffixes: let $V = \text{length } \sqrt{n}$ suffix:
 - Occurrence of *V* in *T* form $O(\sqrt{n})$ arithmetic progressions (AP).
 - DIST[i] = DIST[i'] for any *i*, *i*' are same for same *implied occurrence* of *V*.
 - Show: for each AP, at most two elements are implied occurrences.



distinct distances for suffix LPFs

Case: If SRC[i] = j implies occ in suffix AP

subcase: periodicity of V extends to i: must use 2^{nd} to last occ

subcase: periodicity of V doesn't extend to i: impossible

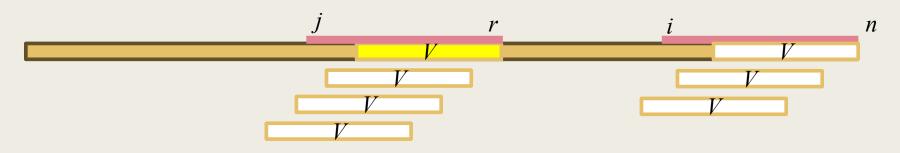
occ of *V* in *T*[*i*..*n*] imply those in T[*j*..*j*+LPF[*i*])



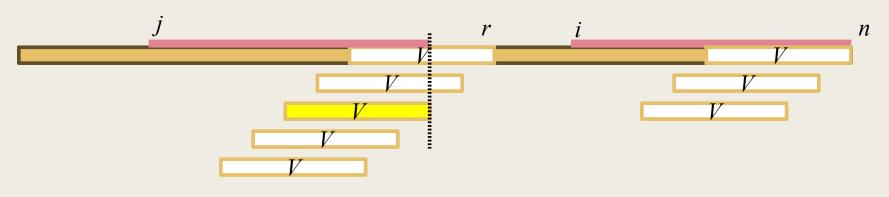
distinct distances for suffix LPFs

Case: If SRC[i] = j implies occ in non-suffix AP

subcase: *i* is in periodic suffix $\rightarrow j$ is right most occ of AP



subcase: *i* is not in periodic suffix $\rightarrow j$ is uniquely matching suffix



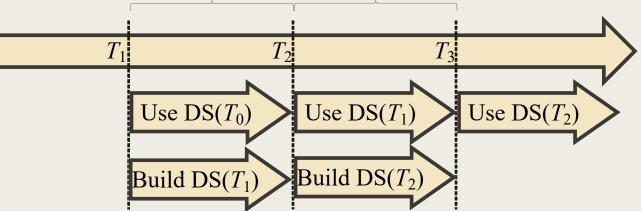
Semi-Dynamic Batch LPF queries

<u>Claim:</u> We can maintain a data structure for LPF/SRC/DIST queries

- $O(\sqrt{n \log n})$ update time
- $O(\sqrt{n \log n} + |Y| \log^{\epsilon} n)$ query time for all positions $y \in Y \subseteq [0, |T|)$.

Proof (sketch):

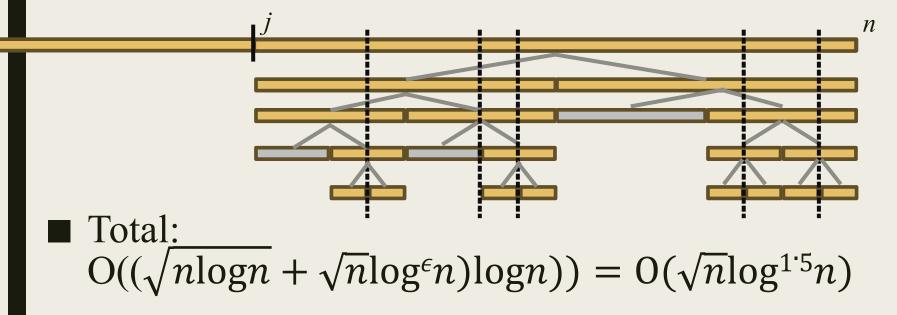
- Use static data structure with $O(\log^{\epsilon} n)$ query, $O(n\sqrt{\log n})$ build time [Keller et al. 2013, Belazzougui&Puglisi 2016]
- Time slicing: $O(\sqrt{n})$ updates $O(\sqrt{n})$ updates



At any point, static data structure for T[0..|T| - x] ($x \le 2\sqrt{n}$) available. Use it to answer queries for T[d..|T|)

Finding the edges to update (push_back)

- Use LPF query to do binary search to find longest repeating suffix R = T[j..n]
- Recursively query endpoints of binary partitions
- Batch LPF queries ($|Y| = O(\sqrt{n})$) at each of log levels



Finding the edges to update (pop_front)

See paper...

Maintain DIST information for finding edges that have SRC[i] = d, where *d* is the number of deletions used so far.

- For each value, determine smallest DIST value and store them in priority queue (min-type) ordered by SRC.
- When positions are deleted, if smallest element SRC is equal to current beginning of string, then all edges with same SRC must be updated.
- Since DIST can be updated in ranges, store key/value as: for each value of DIST, a predecessor DS holding maximal range of consecutive positions with that value

Sensitivity of rotation

rot(*T*): 1 pop_front (delete) and 1 push_back (insert) $1/6|LZ(rot(T))| \le LZ(T) \le 6|LZ(rot(T))|$

follows from [Akagi et al. 2023] (factor 3 del/sub, 2 for ins)

We further show:

There are infinitely many strings for which: $|LZ(rot(T))| \ge |LZ(T)| + \Theta(\sqrt{|T|})$ and $|LZ(rot(T))| \ge 3/2 |LZ(T)| - 2$

Consider $S_m S_1 S_2 \dots S_m$, where $S_i = a_1 \dots a_i$.

For any string *T*, $|LZ(T)| - 1 \le |LZ(rot(T))| \le |LZ(T)| + \Theta(\sqrt{|T|})$ and $|LZ(rot(T))| \le 2|LZ(S)|$

Open Problems

■ Can we do better?

- Upper bound of $O(\sqrt{n})$ is for one rotation. Tighter bound for all rotations?
- Is strictly sublinear update time possible in the fully dynamic setting?