
Maintaining the Size of LZ77
on Semi-dynamic Strings
Hideo Bannai
Panagiotis Charalampopoulos
Jakub Radoszewski

2024/06/25 CPM2024@Fukuoka 1

LZ77 [Ziv&Lempel 1977]
LZ77 factorization
Greedy partitioning of string into phrases:
■ first occurrence of symbol è(0, c)
■ longest prefix of the rest, that has prev. occ. è(len, src)

 Example

■ One of the smallest expressions efficiently computable
■ Size of LZ77 = # of phrases z : measure of compression
■ We will require src to take right-most previous occurrence

2024/06/25 CPM2024@Fukuoka 2

a b a b b a b b a
0 1 2 3 4 5 6 7 8

(0, a) (0, b) (2, 0) (5, 1)

Motivation
Compression sensitivity [Akagi et al. 2023]
■ How much can the size of LZ77 (or other compressed

representations) change after an edit operation?
■ Showed Upper/Lower bounds of additive/multiplicative change

of various repetitiveness measures under ins/del/sub operations
è Other operations? (rotation?)
è Can we exploit this to get smaller representation?

2024/06/25 CPM2024@Fukuoka 3

T T'1 edit

compress/
decompress

Main Results

■ Maintain LZ77 size in semi-dynamic setting:
l pop_front: delete first symbol
l push_back: append given symbol
 in O(𝑛	log2𝑛) amortized time for updates using O(n) space
■ Corollary:
l O(𝑛 𝑛	log2𝑛) time algorithm for computing most

compressible rotation
p O(n2) time is straightforward
p substring compression queries compute in Õ(Z) time: Z = total

number of LZ77 factors in all rotations (still quadratic in worst case)

■ Bounds for sensitivity of LZ77 for rotation operation
(1 pop_front and 1 push_back)

2024/06/25 CPM2024@Fukuoka 4

Longest Previous Factor (LPF) Tree
Main Idea: Maintain LPF tree
 Node : position i (right most position = root)
 Parent : i + max{ 1, LPF[i] }
 Edge label : i – SRC[i] = DIST[i]

■ # of edges on path from 0 to n (root) is LZ77 size.
■ Use Link/cut trees: will allow update/path length queries in O(log n) time.
■ Incoming edges come from range of consecutive positions.

l range of consecutive incoming edges can be moved by simulating RB-tree split/merge with Link/cut
trees with O(log n) time overhead.

■ O(𝑛) updates will allow us to get O(𝑛	log2𝑛) time

2024/06/25 CPM2024@Fukuoka 5

LPF
SRC

T a b b b a b a b b
0 0 2 1 2 3 3 2 1
- - 1 2 0 3 0 2 7

0 1 2 3 4 5 6 7 8 9

- - 1 1 4 2 6 5 1DIST

i

Combinatorial Properties (1)

What can change with pop_front?

Only LPFs whose right most occurrence is at the
beginning of the string can change

2024/06/25 CPM2024@Fukuoka 6

LPF
SRC

T a b b b a b a b b
0 0 2 1 20 3 32 2 1
- - 1 2 0- 3 04 2 7

0 1 2 3 4 5 6 7 8 9

- - 1 1 4- 2 62 5 1DIST

i

Combinatorial Properties (prefix LPF occ)

Claim
For any string, the number of right-most LPF occurrences that are at the
beginning of the string is O(𝑛).

Proof
For 0 < i < i', right-most LPF occurrence at beginning implies LPF[i] < LPF[i'].
Show: ∀i, with SRC[i] = 0, at most one i' ∊ (i, i+LPF[i]) with SRC[i'] = 0.

T[i..i''+LPF[i]) is periodic with period q = i' – i. (By periodicity lemma: min period is
divisor of q, and occurrences of T[i..i+LPF[i]) form arithmetic progression)
Therefore T[0..LPF[i]] = T[i..i+LPF[i]], which contradicts that T[i..i+LPF[i]) is longest.

2024/06/25 CPM2024@Fukuoka 7

i i'0 i'' q

has period q

Combinatorial Properties (2)
What can change with push_back?

LPFs that are suffixes (i.e. reach the root)
can change by extending to the new root
■ 𝛩(n) edges may need to change parents, but they are

consecutive and can be done in a batch
■ How to maintain DIST values?

2024/06/25 CPM2024@Fukuoka 8

LPF
SRC

T a b b b a b a b b
0 0 2 1 2 3 34 23 12
- - 1 2 0 3 0 21 7

0 1 2 3 4 5 6 7 8 9

- - 1 1 4 2 6 56 1DIST

i 10
b
1
8
1

distinct distances for suffix LPFs
Claim

DIST[i] of suffix LPFs (i + LPF[i] = n) form a non-increasing sequence
with O(𝑛) different values.

Proof
■ Right-most occurrence of shorter suffix leads to non-increasing distance.
■ For suffixes shorter than 𝑛 è at most 𝑛 different DIST values.
■ For longer suffixes: let V = length 𝑛 suffix:
l Occurrence of V in T form O(𝑛) arithmetic progressions (AP).
l DIST[i] = DIST[i'] for any i, i' are same for same implied occurrence of V.
l Show: for each AP, at most two elements are implied occurrences.

2024/06/25 CPM2024@Fukuoka 9

n
VV

i

V
V
V

i'

distinct distances for suffix LPFs

Case: If SRC[i] = j implies occ in suffix AP

 subcase: periodicity of V extends to i: must use 2nd to last occ

 subcase: periodicity of V doesn’t extend to i: impossible
 occ of V in T[i..n] imply those in T[j..j+LPF[i])

2024/06/25 CPM2024@Fukuoka 10

n
V

i

V
V

V

n
V

i

V
V

j

j

distinct distances for suffix LPFs

Case: If SRC[i] = j implies occ in non-suffix AP

 subcase: i is in periodic suffix è j is right most occ of AP

 subcase: i is not in periodic suffix è j is uniquely matching suffix

2024/06/25 CPM2024@Fukuoka 11

n
V

i

V
V

V

j
V

r

V
V

ni

V
V

V

V
rj

V

V
V

V

Semi-Dynamic Batch LPF queries
Claim: We can maintain a data structure for LPF/SRC/DIST queries
l O(𝑛	log	𝑛) update time
l O(𝑛	log	𝑛 + |𝑌|log!𝑛) query time for all positions y ∊ Y ⊆ [0,|T|).

Proof (sketch):
l Use static data structure with O(log!𝑛) query, O(𝑛 log	𝑛) build time

[Keller et al. 2013, Belazzougui&Puglisi 2016]
l Time slicing:

2024/06/25 CPM2024@Fukuoka 12

T1 T2 T3

O(𝑛) updates O(𝑛) updates

Use DS(T2)Use DS(T1)

Build DS(T2)Build DS(T1)

Use DS(T0)

At any point, static data structure for T[0..|T| – x] (x ≤ 2 𝑛) available.
Use it to answer queries for T[d..|T|)

Finding the edges to update
(push_back)
■ Use LPF query to do binary search to find longest

repeating suffix R = T[j..n)
■ Recursively query endpoints of binary partitions
■ Batch LPF queries (|Y|=O(𝑛)) at each of log levels

■ Total:
O((𝑛log𝑛 + 𝑛log𝜖𝑛)log𝑛)) = O(𝑛log1.5𝑛)

2024/06/25 CPM2024@Fukuoka 13

j n

Finding the edges to update (pop_front)

See paper...
Maintain DIST information for finding edges that have
SRC[i] = d, where d is the number of deletions used so far.
■ For each value, determine smallest DIST value and store

them in priority queue (min-type) ordered by SRC.
■ When positions are deleted, if smallest element SRC is

equal to current beginning of string, then all edges with
same SRC must be updated.
■ Since DIST can be updated in ranges, store key/value as:

for each value of DIST, a predecessor DS holding maximal
range of consecutive positions with that value

2024/06/25 CPM2024@Fukuoka 14

Sensitivity of rotation
rot(T): 1 pop_front (delete) and 1 push_back (insert)
 1/6|LZ(rot(T))| ≤ LZ(T) ≤ 6|LZ(rot(T))|
 follows from [Akagi et al. 2023] (factor 3 del/sub, 2 for ins)
We further show:
■ There are infinitely many strings for which:

|LZ(rot(T))| ≥ |LZ(T)| + Θ 𝑇 and
|LZ(rot(T))| ≥ 3/2 |LZ(T)| – 2

Consider SmS1S2...Sm , where Si = a1...ai .

■ For any string T,
|LZ(T)| – 1 ≤ |LZ(rot(T))| ≤ |LZ(T)| + Θ 𝑇
 and
|LZ(rot(T))| ≤ 2|LZ(S)|

2024/06/25 CPM2024@Fukuoka 15

Open Problems

■ Can we do better?
l Upper bound of O(𝑛)	is for one rotation. Tighter

bound for all rotations?
l Is strictly sublinear update time possible in the fully

dynamic setting?

2024/06/25 CPM2024@Fukuoka 16

