
Bat-LZ Out of Hell

Zsuzsanna Lipták, Francesco Masillo,
Gonzalo Navarro

Universitá di Verona & Universidad de Chile

CPM 2024

The Context: Accessing Highly Compressed Text

▶ One can represent a text T [1..n] with a (run-length)
context-free grammar of size grl ...

▶ ... and access any T [i] in O(log n) time.
▶ But if one represents T with its Lempel-Ziv 1976 (LZ)

parse, of size z ≤ grl ...
▶ ... there are no known bounds to access T [i].
▶ Can we do something in this respect?

Accessing LZ-Compressed Text
▶ If one goes for the simple algorithm of tracking T [i]

backwards...
▶ ... one may fall into a long reference chain, of length ≤ z.

a l a b a r a l a l a b a r d a $
0 0 1 0 1 0 1 1 2 0 2 1 2 1 0 1 0

▶ Can we design an LZ variant where the length of those
chains is bounded?

▶ Say, by a parameter c, so the cost to access T [i] is O(c).

a l a b a r a l a l a b a r d a $
0 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0

▶ How would this Bounded-Access-Time (BAT)-LZ compress
compared to a grammar that accesses in time O(log n)?

BAT-LZ Parsing

▶ Some definitions:
In a left-to-right parse T = T1 · · ·Tz , each Ti = Si · ai ,

where Si occurs in T starting before Ti and ai ∈ Σ.
The chain length of ai is zero

and that of Ti [j] is one plus that of Si [j].
A BAT-LZ parse with parameter c is a left-to-right parse

where no chain length exceeds c.
▶ It turns out that the best BAT-LZ is NP-hard and APX-hard

[Cicalese & Ugazio 2024].
A BAT-LZ parse is greedy if each Ti , when obtained

left-to-right, is as long as possible.
▶ A greedy BAT-LZ parse is not necessarily optimal, but it is

promising and we can compute it efficiently.

A Greedy BAT-LZ Parse

▶ We parse left-to-right as standard LZ, but put more
restrictions in the phrase to form.

▶ We store the following data:
1. The suffix array of T , as a wavelet matrix.
2. The inverse suffix array of T , as a plain array.
3. An array C[1..n], where C[i] is the chain length of i .
4. An array D[1..n] where D[s] is the least d ≥ 0 s.t.

C[s + d] = c, or else D[s] = ∞
(note D changes as we proceed on T).

5. A dynamic range-maximum-query structure on each level of
the wavelet matrix.

▶ The key observation:
If the source of T [i ..i + ℓ− 1] is T [s..s + ℓ− 1],

then ℓ ≤ D[s].

A Greedy BAT-LZ Parse

So, we can use T [s..s + ℓ− 1] as a source for T [i ..i + ℓ− 1],
whose SA range is [sp..ep], iff

1. ISA[s] ∈ [sp..ep] (i.e., T [s..s + ℓ− 1] = T [i ..i + ℓ− 1]),
2. s < i (i.e., it starts before the new phrase), and
3. ℓ ≤ D[s] (i.e., it does not use forbidden positions).

Text positions

S
A

positions

i

sp
ep

ℓ

ℓ

D
values (undergo updates)

A Geometric Problem

▶ We then store each T [j] as a 3D point

(ISA[j], j ,D[j]),

and search for points in

[sp,ep]× [1, i − 1]× [ℓ,n].

▶ From i , we find the longest admissible prefix of T [i ..].
▶ That is, we check T [i ..i + ℓ− 1] for consecutive values of ℓ.
▶ Once we find the longest phrase T [i ..i + ℓ− 1], we:

1. Set C[i + l] = C[s + l] + 1 for all 0 ≤ l < ℓ and C[i + ℓ] = 0.
2. Every time we obtain C[t] = c in this process, we set

D[k] = t − k for all k ′ < k ≤ t , and finally k ′ = t
(initially k ′ = 0 and all D[·] = ∞).

A Geometric Problem

▶ So we have a 3D orthogonal range search problem where
we want one point if it exists.

▶ The 2nd coordinate of the retrieved point is the desired s.
▶ The 3rd coordinate is modified along the parse.
▶ We did not find any proper linear-space solution in the

literature (asked experts).
▶ We propose a linear-space solution supporting operations

in time O(log3 n).
▶ Our solution works because the queries on the dynamic

coordinate are one-sided.

A Geometric Structure

▶ The D array permuted in level l of the wavelet matrix is Dl .
▶ We build a perfectly balanced tree on it; each node tells if

the maximum is to the left or to the right, Hl [1..n].
▶ Given a range [spl ..epl] in Dl , we can identify the O(log n)

maximal subtrees covering it.
▶ For each subtree, we find its heaviest leaf in O(log n) time.

sp1 ep1

RMQ on D1

RMQ on D2

RMQ on D3

sp2 ep2

sp3 ep3

candidate pos

candidate value

track
position
along
wavelet
matrix D

max

D3

= candidates to max

H3

= roots of subtrees covering the query interval

A Geometric Structure

▶ From the heaviest leaf, we find the actual D[·] value by
tracking the position downwards in the wavelet matrix, in
O(log n) time.

▶ In total, we find the largest D[·] value in a range of Dl in
O(log2 n) time.

▶ A range search on the wavelet matrix yields O(log n)
ranges across different levels l .

▶ So our 3D query takes time O(log3 n).
▶ As we query n times, we get O(n log3 n) time.
▶ We actually use exponential search for ℓ, but still the

updates require the same time.

A Geometric Structure: Updates

▶ We track D[ISA[k]] across every wavelet matrix level l .
▶ We identify all the ancestors Hl [p/2h] for successive h.
▶ We always know the (new) maximum below our subtree.
▶ If the parent node points to the other child, we are done

(we always reduce the values of D).
▶ Else, we must compute that other child’s maximum,

compare, update the node’s direction, and continue.
▶ Total time is O(log3 n) per update, O(n log3 n) in total.

The Result

Theorem
A Greedy BAT-LZ parse of a text T [1..n] can be computed using
O(n) space and O(n log3 n) time.

Theorem
There exists a linear-space data structure that supports
five-sided orthogonal range queries on 3D points, plus updates
on the one-sided dimension, in time O(log3 n) per operation.

Quality of a Greedy Parse

▶ Our Greedy BAT-LZ parse may not produce the smallest
parse (choosing the longest phrase may not be optimal).

▶ Still, our greedy parser may not produce the smallest
greedy parse!

▶ This is because it may not choose the best source for the
longest phrase.

a l a b a r a l a l a b a r d a $
0 0 1 0 2 0 1 1 2 0 2 1 0 1 0 1 0

a l a b a r a l a l a b a r d a $
0 0 1 0 1 0 1 1 2 0 2 1 2 1 0 1 0

The Minmax Parsing

▶ We develop a Minmax Parse, which chooses a source with
least maximum chain length.

▶ From all the admissible sources for T [i ..i + ℓ− 1], it finds
the one with minimum maxC[s..s + ℓ− 1].

▶ It annotates the suffix tree nodes, so that we can choose
the best descendant of the locus of T [i ..i + ℓ− 1].

▶ When the values of C change, we must update those
annotations for that position and preceding ones.

▶ Each change in a position updates annotations in the
upward path from its suffix tree leaf.

▶ Parsing time is O(z ′n2), though now we know it can be
done in O(n2) (details omitted).

G. Navarro Bat-LZ Out of Hell

The Greedier Parsing

▶ The Minmax parse may sometimes not be greedy, missing
potentially longer matches.

▶ We combine it with our greedy parse, using the dynamic
array D again.

▶ The combined parse is greedy and chooses the “best”
phrase.

▶ Parsing time is O(z ′n2 log n) (details omitted again).

G. Navarro Bat-LZ Out of Hell

Experiments

▶ Baseline 1: Cut all LZ phrases where the chain length is
divisible by c.

▶ Baseline 2: Restart the LZ parse whenever this happens.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 15 20 25 30 35 40 45 50

BAT-LZ1
BAT-LZ2

Greedy BAT-LZ
Minmax BAT-LZ
Greedier BAT-LZ

Balanced Grammar

fa
c
to
r
o
v
e
r
o
p
ti
m
a
l

maximum reference chain length

kernel (max 70)

G. Navarro Bat-LZ Out of Hell

Experiments

▶ Baseline 1: Cut all LZ phrases where the chain length is
divisible by c.

▶ Baseline 2: Restart the LZ parse whenever this happens.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 100 300 500 700 900 1100 1300 1500 1700

BAT-LZ1
BAT-LZ2

Greedy BAT-LZ
Minmax BAT-LZ
Greedier BAT-LZ

Balanced Grammar

fa
c
to
r
o
v
e
r
o
p
ti
m
a
l

maximum reference chain length

einstein (max 1736)

G. Navarro Bat-LZ Out of Hell

Experiments

▶ Baseline 1: Cut all LZ phrases where the chain length is
divisible by c.

▶ Baseline 2: Restart the LZ parse whenever this happens.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 10 15 20 25 30 35

BAT-LZ1
BAT-LZ2

Greedy BAT-LZ
Minmax BAT-LZ
Greedier BAT-LZ

Balanced Grammar

fa
c
to
r
o
v
e
r
o
p
ti
m
a
l

maximum reference chain length

para (max 38)

G. Navarro Bat-LZ Out of Hell

Best Results: Greedier

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 15 20 25 30 35 40 45 50

coreutils
kernel
leaders

para
influenza

fa
c
to
r
o
v
e
r
o
p
ti
m
a
l

maximum reference chain length

Greedier BAT-LZ

G. Navarro Bat-LZ Out of Hell

Epilogue and Discussion

▶ A simultaneous work by Bannai et al. [ESA B 2024]
achieves BAT-LZ greedy parse in O(n log σ) time.

▶ Likely faster than ours, likely to use more space.
▶ Our reduction to a geometric problem is also of

independent interest.
▶ We believe we can use it to do the greedier parse in

O(n log3 n) time.
▶ Open problem: limit the average reference chain length.

Value
0
1
2
3
4
5
6

Fr
eq

ue
nc

y

1e6 Histogram of chain length on leaders - LZ (max = 60)

0 10 20 30 40 50 60 70
Value

0
1
2
3
4
5
6

Fr
eq

ue
nc

y

1e6
Histogram of chain length on leaders - Greedier BAT-LZ (max = 20)

G. Navarro Bat-LZ Out of Hell

Epilogue and Discussion

▶ Bannai et al. also show that there is a BAT-LZ parse of size
O(grl) if we let c = Θ(log n).

▶ This is nearly optimal given known lower bounds.
▶ Is there a BAT-LZ parse of size O(z) with c = Θ(log n)?
▶ (of course, this would solve the long-standing problem of

direct access to LZ)

r

no
z

z log(n/z)

r log(n/r)

b log(n/b)

g

v

c z log z

g
rl

no noz log(n/z)

δ δ

b z

log(n/) γ γlog(n/)

γδ

G. Navarro Bat-LZ Out of Hell

