Bat-LZ Out of Hell

Zsuzsanna Lipták, Francesco Masillo, Gonzalo Navarro

Universita di Verona & Universidad de Chile ´

CPM 2024

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ → 할 → 9 Q @

The Context: Accessing Highly Compressed Text

- ▶ One can represent a text *T*[1..*n*] with a (run-length) context-free grammar of size *grl*...
- ▶ ... and access any *T*[*i*] in *O*(log *n*) time.
- ▶ But if one represents *T* with its Lempel-Ziv 1976 (LZ) parse, of size $z < q_{rl}$...

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ → 할 → 9 Q @

- ▶ ... there are no known bounds to access *T*[*i*].
- \triangleright Can we do something in this respect?

Accessing LZ-Compressed Text

- \blacktriangleright If one goes for the simple algorithm of tracking $\overline{T[i]}$ backwards...
- ▶ ... one may fall into a long reference chain, of length ≤ *z*.

a | 1 | a b | a r | a 1 a 1 | a b a r d | a \$ 0 0 1 0 1 0 1 1 2 0 2 1 2 1 0 1 0

- \triangleright Can we design an LZ variant where the length of those chains is bounded?
- ▶ Say, by a parameter *c*, so the cost to access *T*[*i*] is *O*(*c*).

a l l a b a r a l a l a a l a r d a \$ 0 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0

▶ How would this Bounded-Access-Time (BAT)-LZ compress compared to a grammar that accesses in time *O*(log *n*)?

BAT-LZ Parsing

▶ Some definitions:

In a left-to-right parse $T = T_1 \cdots T_z$, each $T_i = S_i \cdot a_i$, *where* S_i *occurs in T starting before* T_i *and* $a_i \in \Sigma$.

> *The chain length of aⁱ is zero* and that of $T_i[j]$ is one plus that of $S_i[j]$.

- *A BAT-LZ parse with parameter c is a left-to-right parse where no chain length exceeds c.*
- ▶ It turns out that the best BAT-LZ is NP-hard and APX-hard [Cicalese & Ugazio 2024].

A BAT-LZ parse is greedy if each Tⁱ , when obtained left-to-right, is as long as possible.

▶ A greedy BAT-LZ parse is not necessarily optimal, but it is promising and we can compute it efficiently.

A Greedy BAT-LZ Parse

- \triangleright We parse left-to-right as standard LZ, but put more restrictions in the phrase to form.
- \blacktriangleright We store the following data:
	- 1. The suffix array of *T*, as a wavelet matrix.
	- 2. The inverse suffix array of *T*, as a plain array.
	- 3. An array *C*[1..*n*], where *C*[*i*] is the chain length of *i*.
	- 4. An array $D[1..n]$ where $D[s]$ is the least $d \geq 0$ s.t. $C[s + d] = c$, or else $D[s] = \infty$ (note *D* changes as we proceed on *T*).
	- 5. A dynamic range-maximum-query structure on each level of the wavelet matrix.
- ▶ The key observation:

If the source of $T[i..i + \ell - 1]$ *is* $T[s..s + \ell - 1]$ *, then* $\ell \leq D[s]$.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ → 할 → 9 Q @

A Greedy BAT-LZ Parse

So, we can use $T[s..s+\ell-1]$ as a source for $T[i..i+\ell-1]$, whose SA range is [*sp*..*ep*], iff

- 1. *ISA*[*s*] ∈ [*sp..ep*] (i.e., *T*[*s..s* + ℓ − 1] = *T*[*i..i* + ℓ − 1]),
- 2. *s* < *i* (i.e., it starts before the new phrase), and
- 3. ℓ ≤ *D*[*s*] (i.e., it does not use forbidden positions).

◆ロト → 伊ト → 君ト → 君ト

 299

A Geometric Problem

▶ We then store each *T*[*j*] as a 3D point

(*ISA*[*j*], *j*, *D*[*j*]),

and search for points in

 $[sp, ep] \times [1, i - 1] \times [\ell, n].$

- ▶ From *i*, we find the longest admissible prefix of *T*[*i*..].
- ▶ That is, we check $T[i..i + \ell 1]$ for consecutive values of ℓ .
- ▶ Once we find the longest phrase $T[i..i + \ell 1]$, we:
	- 1. Set $C[i + 1] = C[s + 1] + 1$ for all $0 \le l < l$ and $C[i + l] = 0$.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ → 할 → 9 Q @

2. Every time we obtain $C[t] = c$ in this process, we set $D[k] = t - k$ for all $k' < k \leq t$, and finally $k' = t$ (initially $k' = 0$ and all $D[\cdot] = \infty$).

A Geometric Problem

- \triangleright So we have a 3D orthogonal range search problem where we want one point if it exists.
- ▶ The 2nd coordinate of the retrieved point is the desired *s*.
- \blacktriangleright The 3rd coordinate is modified along the parse.
- \triangleright We did not find any proper linear-space solution in the literature (asked experts).
- ▶ We propose a linear-space solution supporting operations in time $O(\log^3 n)$.
- ▶ Our solution works because the queries on the dynamic coordinate are one-sided.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ → 할 → 9 Q @

A Geometric Structure

- ▶ The *D* array permuted in level *l* of the wavelet matrix is *D*_{*l*}.
- ▶ We build a perfectly balanced tree on it; each node tells if the maximum is to the left or to the right, *H^l* [1..*n*].
- \blacktriangleright Given a range $[sp_l..ep_l]$ in D_l , we can identify the $O(\log n)$ maximal subtrees covering it.

▶ For each subtree, we find its heaviest leaf in $O(\log n)$ time.

メロト メ都ト メミト メミト

A Geometric Structure

- ▶ From the heaviest leaf, we find the actual **D**[·] value by tracking the position downwards in the wavelet matrix, in *O*(log *n*) time.
- \blacktriangleright In total, we find the largest $D[\cdot]$ value in a range of D_l in $O(\log^2 n)$ time.
- ▶ A range search on the wavelet matrix yields *O*(log *n*) ranges across different levels *l*.
- ▶ So our 3D query takes time *O*(log³ *n*).
- As we query *n* times, we get $O(n \log^3 n)$ time.
- \triangleright We actually use exponential search for ℓ , but still the updates require the same time.

K ロ K K @ K K X 를 K K 를 K (를)

A Geometric Structure: Updates

- ▶ We track *D*[*ISA*[*k*]] across every wavelet matrix level *l*.
- \blacktriangleright We identify all the ancestors $H_I[p/2^h]$ for successive *h*.
- \triangleright We always know the (new) maximum below our subtree.
- \blacktriangleright If the parent node points to the other child, we are done (we always reduce the values of *D*).
- \blacktriangleright Else, we must compute that other child's maximum, compare, update the node's direction, and continue.
- \triangleright Total time is $O(\log^3 n)$ per update, $O(n \log^3 n)$ in total.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할

The Result

Theorem *A Greedy BAT-LZ parse of a text T*[1..*n*] *can be computed using* $O(n)$ *space and* $O(n \log^3 n)$ *time.*

Theorem

There exists a linear-space data structure that supports five-sided orthogonal range queries on 3D points, plus updates on the one-sided dimension, in time O(log³ *n*) *per operation.*

K ロ ▶ K @ ▶ K 평 ▶ K 평 ▶ ... 평

Quality of a Greedy Parse

- ▶ Our Greedy BAT-LZ parse may not produce the smallest parse (choosing the longest phrase may not be optimal).
- ▶ Still, our greedy parser may not produce the smallest greedy parse!
- ▶ This is because it may not choose the best source for the longest phrase.

K ロ ▶ K @ ▶ K 글 ▶ K 글 ▶ │ 글

The Minmax Parsing

- ▶ We develop a Minmax Parse, which chooses a source with least maximum chain length.
- ▶ From all the admissible sources for $T[i..i + \ell 1]$, it finds the one with minimum max $C[s..s+\ell-1]$.
- \blacktriangleright It annotates the suffix tree nodes, so that we can choose the best descendant of the locus of $T[i..i + \ell - 1]$.
- \triangleright When the values of C change, we must update those annotations for that position and preceding ones.
- \blacktriangleright Each change in a position updates annotations in the upward path from its suffix tree leaf.
- ▶ Parsing time is $O(z'n^2)$, though now we know it can be done in *O*(*n* 2) (details omitted).

(ロ) (個) (重) (重) (

The Greedier Parsing

- \blacktriangleright The Minmax parse may sometimes not be greedy, missing potentially longer matches.
- \triangleright We combine it with our greedy parse, using the dynamic array *D* again.
- ▶ The combined parse is greedy and chooses the "best" phrase.
- ▶ Parsing time is $O(z^n)^2 \log n$ (details omitted again).

▶ 4個 ▶ 4回 ▶ 4回 ▶ │

目 $2QQ$

Experiments

- ▶ Baseline 1: Cut all LZ phrases where the chain length is divisible by *c*.
- ▶ Baseline 2: Restart the LZ parse whenever this happens.

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ⊁

 $2QQ$

重

Experiments

- \triangleright Baseline 1: Cut all LZ phrases where the chain length is divisible by *c*.
- ▶ Baseline 2: Restart the LZ parse whenever this happens.

K ロ ▶ K 倒 ▶ K ミ ▶

画

目

Experiments

- \triangleright Baseline 1: Cut all LZ phrases where the chain length is divisible by *c*.
- ▶ Baseline 2: Restart the LZ parse whenever this happens.

K ロ ▶ K 御 ▶ K 唐 ▶

画

 $2QQ$

重

Best Results: Greedier

G. Navarro [Bat-LZ Out of Hell](#page-0-0)

イロト イ部 トイ磨 トイ磨 トー

重。 $2QQ$

Epilogue and Discussion

- ▶ A simultaneous work by Bannai et al. [ESA B 2024] achieves BAT-LZ greedy parse in $O(n \log \sigma)$ time.
- \blacktriangleright Likely faster than ours, likely to use more space.
- ▶ Our reduction to a geometric problem is also of independent interest.
- ▶ We believe we can use it to do the greedier parse in $O(n \log^3 n)$ time.
- ▶ Open problem: limit the average reference chain length.

重

Epilogue and Discussion

- ▶ Bannai et al. also show that there is a BAT-LZ parse of size *O*(g_{rl}) if we let $c = \Theta(\log n)$.
- \blacktriangleright This is nearly optimal given known lower bounds.
- ▶ Is there a BAT-LZ parse of size $O(z)$ with $c = \Theta(\log n)$?
- ▶ (of course, this would solve the long-standing problem of direct access to LZ)

K ロ ⊁ K 御 ≯ K 唐 ⊁ K 唐