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The Context: Accessing Highly Compressed Text

▶ One can represent a text T [1..n] with a (run-length)
context-free grammar of size grl ...

▶ ... and access any T [i] in O(log n) time.
▶ But if one represents T with its Lempel-Ziv 1976 (LZ)

parse, of size z ≤ grl ...
▶ ... there are no known bounds to access T [i].
▶ Can we do something in this respect?



Accessing LZ-Compressed Text
▶ If one goes for the simple algorithm of tracking T [i]

backwards...
▶ ... one may fall into a long reference chain, of length ≤ z.

a l a b a r a l a l a b a r d a $
0 0 1 0 1 0 1 1 2 0 2 1 2 1 0 1 0

▶ Can we design an LZ variant where the length of those
chains is bounded?

▶ Say, by a parameter c, so the cost to access T [i] is O(c).

a l a b a r a l a l a b a r d a $
0 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0

▶ How would this Bounded-Access-Time (BAT)-LZ compress
compared to a grammar that accesses in time O(log n)?



BAT-LZ Parsing

▶ Some definitions:
In a left-to-right parse T = T1 · · ·Tz , each Ti = Si · ai ,

where Si occurs in T starting before Ti and ai ∈ Σ.
The chain length of ai is zero

and that of Ti [j] is one plus that of Si [j].
A BAT-LZ parse with parameter c is a left-to-right parse

where no chain length exceeds c.
▶ It turns out that the best BAT-LZ is NP-hard and APX-hard

[Cicalese & Ugazio 2024].
A BAT-LZ parse is greedy if each Ti , when obtained

left-to-right, is as long as possible.
▶ A greedy BAT-LZ parse is not necessarily optimal, but it is

promising and we can compute it efficiently.



A Greedy BAT-LZ Parse

▶ We parse left-to-right as standard LZ, but put more
restrictions in the phrase to form.

▶ We store the following data:
1. The suffix array of T , as a wavelet matrix.
2. The inverse suffix array of T , as a plain array.
3. An array C[1..n], where C[i] is the chain length of i .
4. An array D[1..n] where D[s] is the least d ≥ 0 s.t.

C[s + d ] = c, or else D[s] = ∞
(note D changes as we proceed on T ).

5. A dynamic range-maximum-query structure on each level of
the wavelet matrix.

▶ The key observation:
If the source of T [i ..i + ℓ− 1] is T [s..s + ℓ− 1],

then ℓ ≤ D[s].



A Greedy BAT-LZ Parse

So, we can use T [s..s + ℓ− 1] as a source for T [i ..i + ℓ− 1],
whose SA range is [sp..ep], iff

1. ISA[s] ∈ [sp..ep] (i.e., T [s..s + ℓ− 1] = T [i ..i + ℓ− 1]),
2. s < i (i.e., it starts before the new phrase), and
3. ℓ ≤ D[s] (i.e., it does not use forbidden positions).
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A Geometric Problem

▶ We then store each T [j] as a 3D point

(ISA[j], j ,D[j]),

and search for points in

[sp,ep]× [1, i − 1]× [ℓ,n].

▶ From i , we find the longest admissible prefix of T [i ..].
▶ That is, we check T [i ..i + ℓ− 1] for consecutive values of ℓ.
▶ Once we find the longest phrase T [i ..i + ℓ− 1], we:

1. Set C[i + l] = C[s + l] + 1 for all 0 ≤ l < ℓ and C[i + ℓ] = 0.
2. Every time we obtain C[t ] = c in this process, we set

D[k ] = t − k for all k ′ < k ≤ t , and finally k ′ = t
(initially k ′ = 0 and all D[·] = ∞).



A Geometric Problem

▶ So we have a 3D orthogonal range search problem where
we want one point if it exists.

▶ The 2nd coordinate of the retrieved point is the desired s.
▶ The 3rd coordinate is modified along the parse.
▶ We did not find any proper linear-space solution in the

literature (asked experts).
▶ We propose a linear-space solution supporting operations

in time O(log3 n).
▶ Our solution works because the queries on the dynamic

coordinate are one-sided.



A Geometric Structure

▶ The D array permuted in level l of the wavelet matrix is Dl .
▶ We build a perfectly balanced tree on it; each node tells if

the maximum is to the left or to the right, Hl [1..n].
▶ Given a range [spl ..epl ] in Dl , we can identify the O(log n)

maximal subtrees covering it.
▶ For each subtree, we find its heaviest leaf in O(log n) time.
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A Geometric Structure

▶ From the heaviest leaf, we find the actual D[·] value by
tracking the position downwards in the wavelet matrix, in
O(log n) time.

▶ In total, we find the largest D[·] value in a range of Dl in
O(log2 n) time.

▶ A range search on the wavelet matrix yields O(log n)
ranges across different levels l .

▶ So our 3D query takes time O(log3 n).
▶ As we query n times, we get O(n log3 n) time.
▶ We actually use exponential search for ℓ, but still the

updates require the same time.



A Geometric Structure: Updates

▶ We track D[ISA[k ]] across every wavelet matrix level l .
▶ We identify all the ancestors Hl [p/2h] for successive h.
▶ We always know the (new) maximum below our subtree.
▶ If the parent node points to the other child, we are done

(we always reduce the values of D).
▶ Else, we must compute that other child’s maximum,

compare, update the node’s direction, and continue.
▶ Total time is O(log3 n) per update, O(n log3 n) in total.



The Result

Theorem
A Greedy BAT-LZ parse of a text T [1..n] can be computed using
O(n) space and O(n log3 n) time.

Theorem
There exists a linear-space data structure that supports
five-sided orthogonal range queries on 3D points, plus updates
on the one-sided dimension, in time O(log3 n) per operation.



Quality of a Greedy Parse

▶ Our Greedy BAT-LZ parse may not produce the smallest
parse (choosing the longest phrase may not be optimal).

▶ Still, our greedy parser may not produce the smallest
greedy parse!

▶ This is because it may not choose the best source for the
longest phrase.

a l a b a r a l a l a b a r d a $
0 0 1 0 2 0 1 1 2 0 2 1 0 1 0 1 0

a l a b a r a l a l a b a r d a $
0 0 1 0 1 0 1 1 2 0 2 1 2 1 0 1 0



The Minmax Parsing

▶ We develop a Minmax Parse, which chooses a source with
least maximum chain length.

▶ From all the admissible sources for T [i ..i + ℓ− 1], it finds
the one with minimum maxC[s..s + ℓ− 1].

▶ It annotates the suffix tree nodes, so that we can choose
the best descendant of the locus of T [i ..i + ℓ− 1].

▶ When the values of C change, we must update those
annotations for that position and preceding ones.

▶ Each change in a position updates annotations in the
upward path from its suffix tree leaf.

▶ Parsing time is O(z ′n2), though now we know it can be
done in O(n2) (details omitted).

G. Navarro Bat-LZ Out of Hell



The Greedier Parsing

▶ The Minmax parse may sometimes not be greedy, missing
potentially longer matches.

▶ We combine it with our greedy parse, using the dynamic
array D again.

▶ The combined parse is greedy and chooses the “best”
phrase.

▶ Parsing time is O(z ′n2 log n) (details omitted again).

G. Navarro Bat-LZ Out of Hell



Experiments

▶ Baseline 1: Cut all LZ phrases where the chain length is
divisible by c.

▶ Baseline 2: Restart the LZ parse whenever this happens.
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Experiments

▶ Baseline 1: Cut all LZ phrases where the chain length is
divisible by c.

▶ Baseline 2: Restart the LZ parse whenever this happens.
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Experiments

▶ Baseline 1: Cut all LZ phrases where the chain length is
divisible by c.

▶ Baseline 2: Restart the LZ parse whenever this happens.
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Best Results: Greedier
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Epilogue and Discussion

▶ A simultaneous work by Bannai et al. [ESA B 2024]
achieves BAT-LZ greedy parse in O(n log σ) time.

▶ Likely faster than ours, likely to use more space.
▶ Our reduction to a geometric problem is also of

independent interest.
▶ We believe we can use it to do the greedier parse in

O(n log3 n) time.
▶ Open problem: limit the average reference chain length.
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Epilogue and Discussion

▶ Bannai et al. also show that there is a BAT-LZ parse of size
O(grl) if we let c = Θ(log n).

▶ This is nearly optimal given known lower bounds.
▶ Is there a BAT-LZ parse of size O(z) with c = Θ(log n)?
▶ (of course, this would solve the long-standing problem of

direct access to LZ)
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