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Circular Pattern Matching

Circular Pattern Matching (CPM)
Goal: find in T all occurrences of rotations of P .

P = abcde →

{
rot1(P ) = bcdea

rot2(P ) = cdeab
T = becdeabaefgbcdeac

→ Algorithms for CPM?

Related problem: Long(est) Common Substring (LCS)

Reduction to LCS
Occurrences of rotations of P in T are exactly
the common substrings of length m = |P | of P 2 and T .

P · P = abcdeabcde T = becdeabaefg . . .

1 / 9



Longest Common Substring

About Longest Common Substring (LCS)

LCS: can be solved in O(n) time and space using suffix trees [Wei73],
[KSV14]: read-only algorithm with space O(s) and time O(n2/s),
Ω(n) space lower bound in streaming,
[MRRS21]: semi-streaming algorithm with space O(1) and time O(n2),

Semi-streaming: Read-only access to P , streaming access to T .

No known algorithm with T · S = n2−o(1).

Q°: Can we extend the trade-off of [KSV14] to semi-streaming?
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Longest Common Substring

Our Results
Semi-streaming algorithm for LCS / CPM
with space Õ(s) and time Õ(n2/s) for

√
n ≤ s ≤ n.

Here, n = |P | and |T | = O(n).

Why s ≥
√
n? “long” vs “short” common substrings.

Two algorithms in time Õ(n2/s):
space O(s) for length ≤ s

space O(n/s) for length ≥ s,
⇒ s ≥

√
n to have T · S = O(n2).
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Longest Common Substring

Short common substrings

Find common substrings of length ` ≤ s in O(s) space and O(n2/s) time:

Cover T with blocks of length 2s, overlapping by s− 1 letters,

T

B0 B2 B4 B6 B8

B1 B3 B5 B7

for each block B, build its suffix tree: O(s) space,
Run P through the suffix tree to find LCS: O(n) time,
there are O(n/s) such blocks: O(n2/s) time in total.

Analysis: each substring of length ` ≤ s is contained in exactly one block.

4 / 9



Internal Pattern Matching

Long commong substrings: Internal Pattern Matching

Internal Pattern Matching (IPM)
Given i, j and a letter a, return an occurrence of T [i..j] · a in T , if any.

→ Data structure problem

Main Result

Data structure for IPM using O(n/s) space and Õ(1) time per query,
restricted to queries with j − i ≥ s.

Uses s-partioning sets of Kosolobov and Sivukhin [KS24] to find O(n/s) “good”
positions,
Build forward and reverse sparse suffix tree for these positions,
Reduce queries to 2D-range emptiness.
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Internal Pattern Matching

From IPM to LCS in semi-streaming

Algorithm: Maintain the longest suffix S of the current window T [..i] that is a
substring of P .

P

T [..i] S

S

When receiving a = T [i + 1], use IPM queries to find if S · a occurs in P .
If yes, we have a new longest suffix.
Otherwise, use binary search to find the longest suffix S ′ of S that occurs in P .

Only works for |S| ≥ s.
→ start when the other algorithm find a common substring of length s
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Internal Pattern Matching
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That’s all folks !

Summary

Circular pattern matching: closely related to LCS.
LCS: Solved using Internal Pattern Matching.

Main Result

Data structure for ≥ s-IPM using O(n/s) space and Õ(1) time per query.

Applications

LCS and CPM in semi-streaming using O(s) space and Õ(n2/s) time for s ≥
√
n.

Open problem: No known reduction from LCS to CPM.
Can we solve CPM faster than T · S = n2?
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That’s all folks !
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