
Internal Pattern Matching in Small Space
and Applications

Gabriel Bathie
with Panagiotis Charalampopoulos and Tatiana Starikovskaya

June 25, 2024

Circular Pattern Matching

Circular Pattern Matching (CPM)
Goal: find in T all occurrences of rotations of P .

P = abcde →

{
rot1(P) = bcdea

rot2(P) = cdeab
T = becdeabaefgbcdeac

→ Algorithms for CPM?

Related problem: Long(est) Common Substring (LCS)

Reduction to LCS
Occurrences of rotations of P in T are exactly
the common substrings of length m = |P | of P 2 and T .

P · P = abcdeabcde T = becdeabaefg . . .

1 / 9

Longest Common Substring

About Longest Common Substring (LCS)

LCS: can be solved in O(n) time and space using suffix trees [Wei73],
[KSV14]: read-only algorithm with space O(s) and time O(n2/s),
Ω(n) space lower bound in streaming,
[MRRS21]: semi-streaming algorithm with space O(1) and time O(n2),

Semi-streaming: Read-only access to P , streaming access to T .

No known algorithm with T · S = n2−o(1).

Q°: Can we extend the trade-off of [KSV14] to semi-streaming?

2 / 9

Longest Common Substring

Our Results
Semi-streaming algorithm for LCS / CPM
with space Õ(s) and time Õ(n2/s) for

√
n ≤ s ≤ n.

Here, n = |P | and |T | = O(n).

Why s ≥
√
n? “long” vs “short” common substrings.

Two algorithms in time Õ(n2/s):
space O(s) for length ≤ s

space O(n/s) for length ≥ s,
⇒ s ≥

√
n to have T · S = O(n2).

3 / 9

Longest Common Substring

Short common substrings

Find common substrings of length ` ≤ s in O(s) space and O(n2/s) time:

Cover T with blocks of length 2s, overlapping by s− 1 letters,

T

B0 B2 B4 B6 B8

B1 B3 B5 B7

for each block B, build its suffix tree: O(s) space,
Run P through the suffix tree to find LCS: O(n) time,
there are O(n/s) such blocks: O(n2/s) time in total.

Analysis: each substring of length ` ≤ s is contained in exactly one block.

4 / 9

Internal Pattern Matching

Long commong substrings: Internal Pattern Matching

Internal Pattern Matching (IPM)
Given i, j and a letter a, return an occurrence of T [i..j] · a in T , if any.

→ Data structure problem

Main Result

Data structure for IPM using O(n/s) space and Õ(1) time per query,
restricted to queries with j − i ≥ s.

Uses s-partioning sets of Kosolobov and Sivukhin [KS24] to find O(n/s) “good”
positions,
Build forward and reverse sparse suffix tree for these positions,
Reduce queries to 2D-range emptiness.

5 / 9

Internal Pattern Matching

From IPM to LCS in semi-streaming

Algorithm: Maintain the longest suffix S of the current window T [..i] that is a
substring of P .

P

T [..i] S

S

When receiving a = T [i + 1], use IPM queries to find if S · a occurs in P .
If yes, we have a new longest suffix.
Otherwise, use binary search to find the longest suffix S ′ of S that occurs in P .

Only works for |S| ≥ s.
→ start when the other algorithm find a common substring of length s

6 / 9

Internal Pattern Matching

From IPM to LCS in semi-streaming

Algorithm: Maintain the longest suffix S of the current window T [..i] that is a
substring of P .

P

T [..i + 1] S a

S a

When receiving a = T [i + 1], use IPM queries to find if S · a occurs in P .
If yes, we have a new longest suffix.
Otherwise, use binary search to find the longest suffix S ′ of S that occurs in P .

Only works for |S| ≥ s.
→ start when the other algorithm find a common substring of length s

6 / 9

Internal Pattern Matching

From IPM to LCS in semi-streaming

Algorithm: Maintain the longest suffix S of the current window T [..i] that is a
substring of P .

P

T [..i + 1] S ′ a

S ′ a

When receiving a = T [i + 1], use IPM queries to find if S · a occurs in P .
If yes, we have a new longest suffix.
Otherwise, use binary search to find the longest suffix S ′ of S that occurs in P .

Only works for |S| ≥ s.
→ start when the other algorithm find a common substring of length s

6 / 9

That’s all folks !

Summary

Circular pattern matching: closely related to LCS.
LCS: Solved using Internal Pattern Matching.

Main Result

Data structure for ≥ s-IPM using O(n/s) space and Õ(1) time per query.

Applications

LCS and CPM in semi-streaming using O(s) space and Õ(n2/s) time for s ≥
√
n.

Open problem: No known reduction from LCS to CPM.
Can we solve CPM faster than T · S = n2?

7 / 9

That’s all folks !

References I

Dmitry Kosolobov and Nikita Sivukhin.
Construction of sparse suffix trees and LCE indexes in optimal time and space.
In Proc. of CPM, 2024.

Tomasz Kociumaka, Tatiana Starikovskaya, and Hjalte Wedel Vildhøj.
Sublinear space algorithms for the longest common substring problem.
In Proc. of ESA, pages 605–617, 2014.

Tung Mai, Anup Rao, Ryan A Rossi, and Saeed Seddighin.
Optimal space and time for streaming pattern matching.
arXiv preprint arXiv:2107.04660, 2021.

8 / 9

That’s all folks !

References II

Peter Weiner.
Linear pattern matching algorithms.
In 14th SWAT, 1973, pages 1–11. IEEE, 1973.

9 / 9

	Circular Pattern Matching
	Longest Common Substring
	Internal Pattern Matching
	Conclusion

