Solving the Minimal Positional Substring Cover problem in sublinear space

Paola Bonizzoni¹ Christina Boucher² **Davide Cozzi**¹ Travis Gagie³ Yuri Pirola¹

¹University of Milano-Bicocca, Italy

²University of Florida, USA

³Dalhousie University, Canada

CPM 2024 – June 25, 2024 – Fukuoka

Context

	Х	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14
	00	1	0	0	1	0	0	0	0	0	0	0	1	1	0	1
	01	1	0	0	1	1	0	0	1	0	0	0	0	0	1	1 Haplotype
	02	1	0	0	1	1	0	0	1	0	0	0	1	0	0	1
	03	1	0	0	1	1	0	0	1	0	0	0	1	0	0	1
	04	0	1	0	1	0	1	0	0	0	0	0	1	0	0	1
	05	0	1	0	1	0	1	0	0	0	0	0	1	0	0	1
	06	0	1	0	1	0	1	0	0	0	0	0	1	0	0	1
	07	0	1	0	1	0	1	0	0	0	0	0	0	1	0	1
	08-	0	1	0	0	1	0	0	0	0	1	1	1	0	0	1
4	09	0	1	0	1	0	0	0	0	1	0	0	0	0	1	1
	10	0	1	0	1	0	0	0	0	1	0	0	0	0	1	1
Set-Maximal	-11	0	1	0	0	1	0	0	0	0	0	1	1	0	0	0
exact match	12	0	1	0	0	1	0	0	0	1	0	1	1	0	0	1
(SMEM)	13	0	1	0	0	1	0	0	0	1	0	1	1	0	0	1
\	14	0	1	0	0	0	0	0	0	1	0	0	0	1	0	1
	15	0	1	0	0	0	0	0	0	1	0	0	0	1	0	1
	16	0	1	0	1	0	0	0	0	0	0	0	1	1	0	1
	17	1	1	0	0	0	1	0	0	0	0	0	1	1	0	1
	18	0	1	1	0	1	0	0	0	0	0	0	1	0	0	1
	19	0	1	1	0	1	0	1	0	0	0	0	0	1	0	1
	z	0	1	0	0	1	0	1	0	0	0	1	1	1	0	1 External haplotype

3

▲口 > ▲圖 > ▲ 臣 > ▲ 臣 >

The haplotype threading problem

The haplotype threading problem is to represent a query haplotype by using one or more substrings derived from the haplotypes within a reference panel.

We solved in sublinear space

- Minimal Positional Substring Cover (MPSC) problem
- the leftmost MPSC problem
- the rightmost MPSC problem
- the length-maximal MPSC problem
- the k-MPSC problem

To solve these problems, we exploit the use of the μ -PBWT (*Bioinformatics, 2023*), augmenting it with the possibility to compute Matching Statistics (MS) and Set-Maximal Exact Matches (SMEMs) that involve at least k rows.

μ -PBWT is able to compute MS and SMEMs in sublinear space.

Positional Burrows-Wheeler Transform

Div	erge	nce						run	←]								
i	$d d_5$	$ a_5 $	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14
00	05	14	0	1	0	0	0		0	0	1	0	0	0	1	0	1
01	00	15	0	1	0	0	0	0	0	0	1	0	0	0	1	0	1
02	01	17	1	1	0	0	0	$\left[\begin{array}{c} 1 \end{array} \right]$	0	0	0	0	0	1	1	0	1
03	04	00	1	0	0	1	0	$\overline{0}$	0	0	0	0	0	1	1	0	1
04	02	04	0	1	0	1	0	$\overline{1}$	0	0	0	0	0	1	0	0	1
05	00	05	0	1	0	1	0	1	0	0	0	0	0	1	0	0	1
06	00	06	0	1	0	1	0	1	0	0	0	0	0	1	0	0	1
07	00	07	0	1	0	1	0	$\left 1 \right $	0	0	0	0	0	0	1	0	1
08	00	09	0	1	0	1	0	$\overline{0}$	0	0	1	0	0	0	0	1	1
09	00	10	0	1	0	1	0	0	0	0	1	0	0	0	0	1	1
10	00	16	0	1	0	1	0	0	0	0	0	0	0	1	1	0	1
11	05	08	0	1	0	0	1	0	0	0	0	1	1	1	0	0	1
12	00	11	0	1	0	0	1	0	0	0	0	0	1	1	0	0	0
13	00	12	0	1	0	0	1	0	0	0	1	0	1	1	0	0	1
14	00	13	0	1	0	0	1	0	0	0	1	0	1	1	0	0	1
15	03	18	0	1	1	0	1	0	0	0	0	0	0	1	0	0	1
16	00	19	0	1	1	0	1	0	1	0	0	0	0	0	1	0	1
17	04	01	1	0	0	1	1	0	0	1	0	0	0	0	0	1	1
18	00	02	1	0	0	1	1	0	0	1	0	0	0	1	0	0	1
19	00	03	1	0	0	1	1		0	1	0	0	0	1	0	0	1
	Prefix array (PA)																

Matching statistics are able to compute SMEMs

Matching statistics

Given a panel $M = \{m_0, \ldots, m_{h-1}\}$, s.t. $|m_i| = w$, and an external haplotype P (|P| = w), we define **matching statistics** of P against M as an array MS of pair (row, len), |MS| = w, such that:

■ $m_{MS[i].row}[i - MS[i].len + 1, i] = P[i - MS[i].len + 1, i]$, so we have a MS[i].len-long match between P and MS[i].row to the *i*-th column

• P[i - MS[i].len, i] is not a suffix of any subset of row of M

Set-maximal exact match (SMEM)

A triple (A, b, e) such that:

- $m_i[b:e] = P[b:e]$ for each $i \in A$ ((A, b, e) is a set match)
- $m_i[b-1] \neq P[b-1]$ and $m_i[e+1] \neq P[e+1]$
- # j ∈ {0, 1, ... h − 1}\A such that there is a set match from P to x_j
 that includes the interval [b : e]

э

<ロト < 四ト < 三ト < 三ト

Matching statistics are able to compute SMEMs

Compute SMEMs from MS

Given a matching statistics array MS, $P[i - \ell + 1, i]$ shares a ℓ -long SMEM with MS[*i*].row iff:

- MS[*i*].len = *ℓ*
- $i = w 1 \lor MS[i]$.len $\ge MS[i + 1]$.len

Μ	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	1	0	1	0	1	0	1	1	0	0	0	0	0	0	0
2	0	1	1	0	0	1	1	0	0	1	1	0	0	0	0
3	1	0	1	0	1	0	0	1	0	0	0	1	1	0	0
4	1	1	1	0	1	1	1	1	0	0	1	0	0	0	0
5	0	1	0	1	0	0	0	0	1	1	0	1	0	0	1
6	1	0	1	0	1	1	1	1	0	0	1	1	0	0	0
MS	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
P	1	1	(1	0	1)	0	(1	1	0	0)	1	1	1	0	0
row	6	4	4	4	4	3	1	1	1	1	6	6	3	3	3
len	1	2	3	4	5	4	5	6	7	8	5	6	2	3	4
										1.0	1 1 4 4	a 🖌 🖌 🖲	÷ ⊾ 4 3	= . · · ·	= 0

Positional substring

A positional substring of a string X is a triplet (i, j, X) with $1 \le i, j \le |X|$ and we say that the substring corresponding to (i, j, X) is X[i...j].

Minimal Positional Substring Cover (MPSC) problem

Given a set M of strings of length w (i.e., panel), a *positional substring* cover of a w-length string P by M is a set C of positional substrings s.t.:

- each $\ell \in [1, w]$ of P is covered by a $(i, j, X) \in C$ (i.e., $i \leq \ell \leq j$)
- the substring corresponding to each $(i, j, X) \in C$ is contained in P
- the substring corresponding to each $(i, j, X) \in C$ is contained in at least one string of M

We are then interested in a positional substring cover which is also minimal, i.e. with the smallest size over all positional substring covers of P by S.

Minimal Positional Substring Cover Problem

25/06/2024

< /□ > < Ξ

Some variants proposed in literature

- Find a *leftmost MPSC C* of P by M, i.e. a MPSC of P by M such that any *i*-th substring in C starts at least as early as the *i*-th substring of every other MPSC of P by M
- Find a rightmost MPSC C of P by M, i.e. a MPSC of P by M such that any *i*-th substring in C ends at least as late as the *i*-th substring of every other MPSC of P by M
- Find a *length-maximal MPSC* of *P* by *M*, i.e. the MPSC that has the largest length out of all MPSCs of *P* by *M*

k-Minimal Positional Substring Cover (MPSC) problem

Every MPSC variant can be extended to consider at least k strings of M.

イロト イポト イヨト イヨト

Our approach solves left/rightmost MPSC problem

Figure: How to compute leftmost MPSC by using Matching Statistics

Length-maximal MPSC problem

Sanaullah et al. (*Genome Research, 2023*) showed the length-maximal MPSC problem can be solved using a leftmost MPSC, a rightmost MPSC, and the set of SMEMs and we showed that our approach is able to compute all these "ingredients".

k-Minimal Positional Substring Cover (MPSC) problem

Every MPSC variant can be extended to consider at least k strings of M.

Extension

We extend the notion of MS and SMEMs obtaining:

- k-MS: MS s.t. each left-maximal match represented in the MS array involves at least k rows in the input panel
- *k*-SMEMs: SMEMs that involve at least *k* rows in the input panel

 μ -PBWT was able to compute MS and SMEMs in sublinear space and it is extended also to compute *k*-MS and *k*-SMEMs in sublinear space.

イロト イポト イヨト イヨ

Results on 1000 Genomes Project data

Panels details

- panels from phase 3 of 1000 Genomes Project
- fixed number of haplotypes (5008) and variable number of sites
- 30 haplotypes as queries \implies panels with 4978 haplotypes
- comparison against Sanaullah et al. MPSC implementation (Genome Research, 2023)
- tested different k values (k = 1 for classical MS and SMEMs)

Chromosome	#Sites	Avg. runs
chr18	2,171,378	11
chr2	6,786,300	11
	1	

Results on 1000 Genomes Project data

			Wall Clock Ti	me (seconds)	Max Memor	y usage (GB)
Chr.	Task	k	μ -PBWT	k-MPSC	μ -PBWT	k-MPSC
18	Index	1 50 200	425 697 807	5750 5750 5750	3.26 3.36 3.36	168.58 168.58 168.58
	Querying	1 50 200	70 739 1740	128 229 119	1.92 2.13 2.74	171.19 171.30 171.22
2	Index	1 50 200	1381 1643 2798	- - -	6.45 6.62 6.62	- - -
	Querying	1 50 200	254 1687 3563	- - -	5.87 6.57 8.45	- - -

< □ > < 同 > < 回 > <

æ

Take home message

We addressed the theoretical aspects of the haplotype threading problem via the MPSC problem, primarily aiming to offer practical solutions capable of scaling to large biological datasets. Our approach opens up unprecedented opportunities for comprehensive genetic studies and exploration on a large scale.

Future developments

 Optimize the implementation and perform experiments on bigger datasets such as UK Biobank data.

 Integration of μ-PBWT in GLIMPSE (*Nature Genetics, 2021*), a state-of-the-art haplotype phasing and genotype imputation tool for low-coverage sequencing datasets using haplotype threading.

Thank you for your attention!

< □ > < 同 >