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Sparse su�x tree and LCE index

Given a read-only length-n string s over the alphabet {0, . . . , nO(1)}
▶ Sparse su�x tree (SST) is a compacted trie containing only

speci�ed b su�xes s[i1..n], s[i2..n], . . . , s[ib..n]

▶ Longest common extension (LCE) index supports the queries
LCE (p, q) = max{ℓ : s[p .. p + ℓ) = s[q .. q + ℓ)}

SST takes O(b) space (in machine words) on top of s itself
LCE index with O(b) space has O(nb )-time queries [Bille et al. 15]
(optimal trade-o�, at least for b ≥ Ω(n/ log n) [Kosolobov 17])

Construct LCE index and SST in O(b) space and O(n) time?
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Results

SST construction algorithm O(b) space build

[Gawrychowsky, Kociumaka 17] O(n)∗

[Birenzwige et al. 20] O(n)∗∗

[Birenzwige et al. 20] O(n log n
b )

ours O(n logb n)

LCE construction algorithm O(b) space build Query time

[Gawrychowsky, Kociumaka 17] O(n)∗ O(nb )
[Birenzwige et al. 20] O(n)∗∗ O(nb )
[Tanimura et al. 16] O(n · n

b ) O(nb log
n
b )

[Birenzwige et al. 20] O(n log n
b ) O(nb

√
log∗ n)

ours O(n logb n) O(n
b
)

*randomized Monte-Carlo **randomized Las Vegas

Ours: O(n)-time deterministic construction for b > nϵ with constant ϵ
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Partitioning sets imply LCE index + SST

For 1 ≤ τ ≤ n, a τ -partitioning set of s[1..n] is a subset of
positions {1, . . . , n} with certain properties

[Birenzwige et al. 20]

Given a τ -partitioning set of size O(b) with τ = n
b , one can

construct in O(n) time an LCE index with O(nb )-time queries and
an SST on any b su�xes using O(b) space on top of the input

Main result
For τ = n

b , a τ -partitioning set of size O(b) can be constructed in
O(n logb n) time using O(b) space on top of the string s[1..n]
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Partitioning sets

A set S ⊆ [1..n] is τ -partitioning for a string s[1..n] if:

(a) if s[i−τ..i+τ ] = s[j−τ..j+τ ], then i ∈ S ⇔ j ∈ S (locally
consistent)

· · ·
︷ ︷
· · · •

i
· · · · · ·

︷ ︷
· · · ·

j
· · · · · ·

(b) if s[i ..i+ℓ] = s[j ..j+ℓ] for i , j ∈ S , then for each d ∈ [0..ℓ−τ),
i + d ∈ S i� j + d ∈ S (forward synchronized)

· · ·
︷ ︷
•
i
· · • · • • · · • · · • · · ·

︷ ︷
•
j
· · · · · · · · · · · · · · ·

(c) if i , j ∈ S ∪ {1, n} with j−i > τ and (i ..j) ∩ S = ∅, then the
period of s[i ..j ] is at most τ/4 (dense)

· · · • · • • · • · • • · •
︷︷
• ·

︷︷
· ·
︷︷
· ·
︷︷
· ·
︷︷
· ·
︷︷
· ·
︷︷
· · • · • • • · · • · • · • • · ·•

Note: often we have |S | ≥ Ω(nτ ) = Ω(b) due to (c)
Related: synchronizing sets, minimizers, locally consistent parsing...
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Construction scheme for the τ -partitioning set

1. Produce a τ -partitioning set of size O(nτ log
∗ n) = O(b log∗ n)

using a variant of deterministic coin tossing [Cole, Vishkin 86],
[Mehlhorn et al. 97]

2. Store it in O(nτ ) space in a packed form (losing some info)

3. Sparsify it to size O(nτ ) using recompression [Je
z 15]

4. Run 1 again retaining only positions remaining after the
sparsi�cation

The devil is in details
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Deterministic coin tossing

Iteratively, for k = 0, . . . , log τ
log∗ n , given a (2k log∗ n)-partitioning

set Sk of size O( n
2k
), sparsify it to make a (2k+1 log∗ n)-partitioning

set Sk+1 ⊆ Sk as follows (initial S0 = {1, . . . , n}):
▶ Let Sk = {j1 < · · · < j|Sk |}. For jh ∈ Sk , assign BIG number

vh whose bit representation is the bit string s[jh .. jh+2k+1],
interpreting letters s[jh], s[jh+1], . . . as O(log n)-bit sequences

▶ Given jh ∈ Sk :

▶ if jh − jh−1 > 2k or vh−1 = vh or vh−1 = ∞, assign vh = ∞
▶ otherwise, assign vh = vbit(vh−1, vh) where vbit is the

Vishkin�Cole magic reducing the bit length logarithmically

▶ Do O(log∗ n) reductions until vh is O(1) or ∞ for all h
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Vishkin�Cole magic reducing the bit length logarithmically
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Deterministic coin tossing

Put into Sk+1 all jh such that jh − jh−1 > 2k or jh+1 − jh > 2k or
∞ > vh−1 > vh < vh+1 (local minima vh)

. . .

︸ ︷︷ ︸
>2k

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

j1 j2 j3 j4 j5 j6 j7 j8 j9 j10j11j12j13j14j15 j16j17j18j19j20j21 j22j23 j24j25

(Exact conditions are more complicated...)
How to store the sets Sk? Do we have to?
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Deterministic coin tossing

The decision to put j ∈ Sk into Sk+1 is �local�. We process Sk
left-to-right and feed the result to the same procedure processing
Sk+1 left-to-right. The �cascade� of procedures feeding each other:

On the way, we build LCE indexes and SSTs for Vishkin�Cole magic
The last level receives a τ -partitioning set of size O(nτ log

∗ n)
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To recompression

The resulting set S of size O(nτ log
∗ n) cannot be stored. Instead

we make a string R of length |S | over a small alphabet which can
be stored in O(nτ ) machine words, such that any two letters of R
corresponding to positions of S at a distance ≤ τ

2
are distinct.

R = ... a b c d a c b d b ...

Sk

How the letters of R are constructed?
Simple: interwined magic cascade of Vishkin�Cole magic!
We store separately the approximate info about distances between
positions of S su�cient to determine if |j − j ′| < τ

2
for j , j ′ ∈ S
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Recompression

▶ Collect statistics of occurrences of pairs R[i ],R[i+1]

▶ Mark alphabet letters with 0 and 1 so that the number of pairs
R[i ],R[i+1] marked 0, 1, respectively, is at least 1

4
|R|

▶ For each such pair, remove R[i ] from R if the distance from
the positions of S corresponding to R[i ] and R[i+1] is ≤ τ

2

▶ Do this until |R| ≤ O(nτ )

0 1 0 1 0 0 1 1 1 0 0 1 1 0

a b c d a c b d b a c d b a

0 1 0 0 1 1 0 1 0 0

a b c d a c b d b a c d b a

Generate the set S using Vishkin�Cole again, retaining only those
positions that correspond to remaining letters of R

D. Kosolobov and N. Sivukhin
Construction of Sparse Su�x Trees and LCE Indexes in Optimal Time and Space
12 / 13



Recompression

▶ Collect statistics of occurrences of pairs R[i ],R[i+1]

▶ Mark alphabet letters with 0 and 1 so that the number of pairs
R[i ],R[i+1] marked 0, 1, respectively, is at least 1

4
|R|

▶ For each such pair, remove R[i ] from R if the distance from
the positions of S corresponding to R[i ] and R[i+1] is ≤ τ

2

▶ Do this until |R| ≤ O(nτ )

0 1 0 1 0 0 1 1 1 0 0 1 1 0

a b c d a c b d b a c d b a

0 1 0 0 1 1 0 1 0 0

a b c d a c b d b a c d b a

Generate the set S using Vishkin�Cole again, retaining only those
positions that correspond to remaining letters of R

D. Kosolobov and N. Sivukhin
Construction of Sparse Su�x Trees and LCE Indexes in Optimal Time and Space
12 / 13



Recompression

▶ Collect statistics of occurrences of pairs R[i ],R[i+1]

▶ Mark alphabet letters with 0 and 1 so that the number of pairs
R[i ],R[i+1] marked 0, 1, respectively, is at least 1

4
|R|

▶ For each such pair, remove R[i ] from R if the distance from
the positions of S corresponding to R[i ] and R[i+1] is ≤ τ

2

▶ Do this until |R| ≤ O(nτ )

0 1 0 1 0 0 1 1 1 0 0 1 1 0

a b c d a c b d b a c d b a

0 1 0 0 1 1 0 1 0 0

a b c d a c b d b a c d b a

Generate the set S using Vishkin�Cole again, retaining only those
positions that correspond to remaining letters of R

D. Kosolobov and N. Sivukhin
Construction of Sparse Su�x Trees and LCE Indexes in Optimal Time and Space
12 / 13



Recompression

▶ Collect statistics of occurrences of pairs R[i ],R[i+1]

▶ Mark alphabet letters with 0 and 1 so that the number of pairs
R[i ],R[i+1] marked 0, 1, respectively, is at least 1

4
|R|

▶ For each such pair, remove R[i ] from R if the distance from
the positions of S corresponding to R[i ] and R[i+1] is ≤ τ

2

▶ Do this until |R| ≤ O(nτ )

0 1 0 1 0 0 1 1 1 0 0 1 1 0

a b c d a c b d b a c d b a

0 1 0 0 1 1 0 1 0 0

a b c d a c b d b a c d b a

Generate the set S using Vishkin�Cole again, retaining only those
positions that correspond to remaining letters of R

D. Kosolobov and N. Sivukhin
Construction of Sparse Su�x Trees and LCE Indexes in Optimal Time and Space
12 / 13



Recompression

▶ Collect statistics of occurrences of pairs R[i ],R[i+1]

▶ Mark alphabet letters with 0 and 1 so that the number of pairs
R[i ],R[i+1] marked 0, 1, respectively, is at least 1

4
|R|

▶ For each such pair, remove R[i ] from R if the distance from
the positions of S corresponding to R[i ] and R[i+1] is ≤ τ

2

▶ Do this until |R| ≤ O(nτ )

0 1 0 1 0 0 1 1 1 0 0 1 1 0

a b c d a c b d b a c d b a

0 1 0 0 1 1 0 1 0 0

a b c d a c b d b a c d b a

Generate the set S using Vishkin�Cole again, retaining only those
positions that correspond to remaining letters of R

D. Kosolobov and N. Sivukhin
Construction of Sparse Su�x Trees and LCE Indexes in Optimal Time and Space
12 / 13



Recompression

▶ Collect statistics of occurrences of pairs R[i ],R[i+1]

▶ Mark alphabet letters with 0 and 1 so that the number of pairs
R[i ],R[i+1] marked 0, 1, respectively, is at least 1

4
|R|

▶ For each such pair, remove R[i ] from R if the distance from
the positions of S corresponding to R[i ] and R[i+1] is ≤ τ

2

▶ Do this until |R| ≤ O(nτ )

0 1 0 1 0 0 1 1 1 0 0 1 1 0

a b c d a c b d b a c d b a

0 1 0 0 1 1 0 1 0 0

a b c d a c b d b a c d b a

Generate the set S using Vishkin�Cole again, retaining only those
positions that correspond to remaining letters of R

D. Kosolobov and N. Sivukhin
Construction of Sparse Su�x Trees and LCE Indexes in Optimal Time and Space
12 / 13



Recompression

▶ Collect statistics of occurrences of pairs R[i ],R[i+1]

▶ Mark alphabet letters with 0 and 1 so that the number of pairs
R[i ],R[i+1] marked 0, 1, respectively, is at least 1

4
|R|

▶ For each such pair, remove R[i ] from R if the distance from
the positions of S corresponding to R[i ] and R[i+1] is ≤ τ

2

▶ Do this until |R| ≤ O(nτ )

0 1 0 1 0 0 1 1 1 0 0 1 1 0

a b c d a c b d b a c d b a

0 1 0 0 1 1 0 1 0 0

a b c d a c b d b a c d b a

Generate the set S using Vishkin�Cole again, retaining only those
positions that correspond to remaining letters of R

D. Kosolobov and N. Sivukhin
Construction of Sparse Su�x Trees and LCE Indexes in Optimal Time and Space
12 / 13



Recompression

▶ Collect statistics of occurrences of pairs R[i ],R[i+1]

▶ Mark alphabet letters with 0 and 1 so that the number of pairs
R[i ],R[i+1] marked 0, 1, respectively, is at least 1

4
|R|

▶ For each such pair, remove R[i ] from R if the distance from
the positions of S corresponding to R[i ] and R[i+1] is ≤ τ

2

▶ Do this until |R| ≤ O(nτ )

0 1 0 1 0 0 1 1 1 0 0 1 1 0

a b c d a c b d b a c d b a

0 1 0 0 1 1 0 1 0 0

a b c d a c b d b a c d b a

Generate the set S using Vishkin�Cole again, retaining only those
positions that correspond to remaining letters of R

D. Kosolobov and N. Sivukhin
Construction of Sparse Su�x Trees and LCE Indexes in Optimal Time and Space
12 / 13



Recompression

▶ Collect statistics of occurrences of pairs R[i ],R[i+1]

▶ Mark alphabet letters with 0 and 1 so that the number of pairs
R[i ],R[i+1] marked 0, 1, respectively, is at least 1

4
|R|

▶ For each such pair, remove R[i ] from R if the distance from
the positions of S corresponding to R[i ] and R[i+1] is ≤ τ

2

▶ Do this until |R| ≤ O(nτ )

0 1 0 1 0 0 1 1 1 0 0 1 1 0

a b c d a c b d b a c d b a

0 1 0 0 1 1 0 1 0 0

a b c d a c b d b a c d b a

Generate the set S using Vishkin�Cole again, retaining only those
positions that correspond to remaining letters of R

D. Kosolobov and N. Sivukhin
Construction of Sparse Su�x Trees and LCE Indexes in Optimal Time and Space
12 / 13



Recompression

▶ Collect statistics of occurrences of pairs R[i ],R[i+1]

▶ Mark alphabet letters with 0 and 1 so that the number of pairs
R[i ],R[i+1] marked 0, 1, respectively, is at least 1

4
|R|

▶ For each such pair, remove R[i ] from R if the distance from
the positions of S corresponding to R[i ] and R[i+1] is ≤ τ

2

▶ Do this until |R| ≤ O(nτ )

0 1 0 1 0 0 1 1 1 0 0 1 1 0

a b c d a c b d b a c d b a

0 1 0 0 1 1 0 1 0 0

a b c d a c b d b a c d b a

Generate the set S using Vishkin�Cole again, retaining only those
positions that correspond to remaining letters of R

D. Kosolobov and N. Sivukhin
Construction of Sparse Su�x Trees and LCE Indexes in Optimal Time and Space
12 / 13



Recompression

▶ Collect statistics of occurrences of pairs R[i ],R[i+1]

▶ Mark alphabet letters with 0 and 1 so that the number of pairs
R[i ],R[i+1] marked 0, 1, respectively, is at least 1

4
|R|

▶ For each such pair, remove R[i ] from R if the distance from
the positions of S corresponding to R[i ] and R[i+1] is ≤ τ

2

▶ Do this until |R| ≤ O(nτ )

0 1 0 1 0 0 1 1 1 0 0 1 1 0

a b c d a c b d b a c d b a

0 1 0 0 1 1 0 1 0 0

a b c d a c b d b a c d b a

Generate the set S using Vishkin�Cole again, retaining only those
positions that correspond to remaining letters of R

D. Kosolobov and N. Sivukhin
Construction of Sparse Su�x Trees and LCE Indexes in Optimal Time and Space
12 / 13



Recompression

▶ Collect statistics of occurrences of pairs R[i ],R[i+1]

▶ Mark alphabet letters with 0 and 1 so that the number of pairs
R[i ],R[i+1] marked 0, 1, respectively, is at least 1

4
|R|

▶ For each such pair, remove R[i ] from R if the distance from
the positions of S corresponding to R[i ] and R[i+1] is ≤ τ

2

▶ Do this until |R| ≤ O(nτ )

0 1 0 1 0 0 1 1 1 0 0 1 1 0

a b c d a c b d b a c d b a

0 1 0 0 1 1 0 1 0 0

a b c d a c b d b a c d b a

Generate the set S using Vishkin�Cole again, retaining only those
positions that correspond to remaining letters of R

D. Kosolobov and N. Sivukhin
Construction of Sparse Su�x Trees and LCE Indexes in Optimal Time and Space
12 / 13



Thank you for your
attention!
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