

Giulia Bernadini, Huiping Chen, Inge Li Gørtz, *Christoffer Krogh*, Grigorios Loukides, Solon P. Pissis, Leen Stougie, Michelle Sweering

Overview

- Previous Work
- This Work

Previous Work

Making de Bruijn Graphs Eulerian

- Authors ① Giulia Bernardini ⁰, Huiping Chen ⁰, Grigorios Loukides ⁰, Solon P. Pissis ⁰, Leen Stougie, Michelle Sweering
- → Part of: Volume: 33rd Annual Symposium on Combinatorial Pattern Matching (CPM 2022)
 - Series: Leibniz International Proceedings in Informatics (LIPIcs)
 - 22 Conference: Annual Symposium on Combinatorial Pattern Matching (CPM)
- > License: Creative Commons Attribution 4.0 International license
- > Publication Date: 2022-06-22

ullet Collection of length k strings

- Collection of length *k* strings
- Vertices are length k-1 subtrings

- Collection of length *k* strings
- Vertices are length k-1 subtrings
- Edges iff corresponding string exists in collection

- Collection of length k strings
- Vertices are length k-1 subtrings
- Edges iff corresponding string exists in collection

Circuit of every edge exactly once

- Circuit of every edge exactly once
- Euler's Theorem:
 - 1. Edges must be connected
 - 2. Vertices must be balanced

- Circuit of every edge exactly once
- Euler's Theorem:
 - 1. Edges must be connected
 - 2. Vertices must be balanced

- Circuit of every edge exactly once
- Euler's Theorem:
 - 1. Edges must be connected
 - 2. Vertices must be balanced

Making de Bruijn Graphs Eulerian

- Authors ① Giulia Bernardini ⁰, Huiping Chen ⁰, Grigorios Loukides ⁰, Solon P. Pissis ⁰, Leen Stougie, Michelle Sweering
- → Part of: Volume: 33rd Annual Symposium on Combinatorial Pattern Matching (CPM 2022)
 - Series: Leibniz International Proceedings in Informatics (LIPIcs)
 - 22 Conference: Annual Symposium on Combinatorial Pattern Matching (CPM)
- > License: Creative Commons Attribution 4.0 International license
- > Publication Date: 2022-06-22

Eulerian Extension of de Bruijn Graphs (EXTEND-DBG)

Eulerian Extension of de Bruijn Graphs (EXTEND-DBG)

• Given a de Bruijn graph

Making & Gruip Caphe Exterior

Casin Security in Proceedings of the Caphe Exterior

Caphe Exterior

Casin Security in Proceedings of the Caphe Exterior

Caphe Ext

Eulerian Extension of de Bruijn Graphs (EXTEND-DBG)

- Given a de Bruijn graph
- Make Eulerian from the complete de Bruijn graph

Making de Bruijn Graphs Eulerian Authors ① Giulia Bernardini ②, Huiping Chen ②, Grigorios Loukides ②, Solon P. Pissis ②, Leen Stougie, Michelle Sweering Part of: ② Volume: 33rd Annual Symposium on Combinatorial Pattern Matching (CPM 2022) ② Series: Leibniz International Proceedings in Informatics (LIPIcs) ② Conference: Annual Symposium on Combinatorial Pattern Matching (CPM) License: ② ② Creative Commons Attribution 4.0 International license > Publication Date: 2022-06-22

Eulerian Extension of de Bruijn Graphs (EXTEND-DBG)

- Given a de Bruijn graph
- Make Eulerian from the complete de Bruijn graph
- Minimize number of new edges

DNA sequencing

DNA sequencing

• $caaacgca \Rightarrow \{caa, aaa, aac, acg, cgc, gca\}$

DNA sequencing

• $caaacgca \Rightarrow \{caa, aaa, aac, acg, cgc, gca\}$

DNA sequencing

• $caaacgca \Rightarrow \{caa, aaa, \underline{aac}, \underline{acg}, cgc, \underline{gca}\}$

DNA sequencing

• $caaacgca \Rightarrow \{caa, aaa, \underline{aac}, acg, cgc, gca\}$

DNA sequencing

• $caaacgca \Rightarrow \{caa, aaa, \underline{aac}, acg, cgc, gca\}$

- EXTEND-DBG is NP-hard
 - -even when only adding edges

- EXTEND-DBG is NP-hard
 - even when only adding edges
- •Split problem in two:

- EXTEND-DBG is NP-hard
 - even when only adding edges
- Split problem in two:
 - 1.Connect de Bruijn Graph

- EXTEND-DBG is NP-hard
 - even when only adding edges
- Split problem in two:
 - 1. Connect de Bruijn Graph

2.Balance de Bruijn Graph

$$A = A_L X A_R$$
$$B = B_L X B_R$$

$$A = A_L X A_R$$
$$B = B_L X B_R$$

$$A = A_L X A_R$$
$$B = B_L X B_R$$

$$A = A_L X A_R$$
$$B = B_L X B_R$$

$$d(A, B) = k - 1 - |X| + \min\{A_L + B_R, A_R + B_L\}$$

Connecting de Bruijn Graphs 25.06.2024 **Technical University of Denmark**

$$A = A_L X A_R$$
$$B = B_L X B_R$$

$$d(A, B) = k - 1 - |X| + \min\{A_L + B_R, A_R + B_L\}$$

Technical University of Denmark 25.06.2024 Connecting de Bruijn Graphs

Connect de Bruijn Graph with Paths

CONNECT-DBG-P	

Connect de Bruijn Graph with Paths

CONNECT-DBG-P

• Given a de Bruijn Graph

Connect de Bruijn Graph with Paths

CONNECT-DBG-P

- Given a de Bruijn Graph
- Weakly connect adding only directed paths

CONNECT-DBG-P

- Given a de Bruijn Graph
- Weakly connect adding only directed paths
- Minimize number of new edges

CONNECT-DBG-P

- Given a de Bruijn Graph
- Weakly connect adding only directed paths
- Minimize number of new edges

Solve in $\mathcal{O}(|V|k\log d + |E|)$ time,

d is the number of connected components

CONNECT-DBG-P

- Given a de Bruijn Graph
- Weakly connect adding only directed paths
- Minimize number of new edges

Solve in $\mathcal{O}(|V|k\log d + |E|)$ time,

d is the number of connected components

Balance de Bruijn Graph

BALANCE-DBG

- Given a de Bruijn Graph
- Balance all vertices
- Minimize number of new edges

CONNECT-DBG-P

- Given a de Bruijn Graph
- Weakly connect adding only directed paths
- Minimize number of new edges

Solve in $\mathcal{O}(|V|k\log d + |E|)$ time, d is the number of connected components

Balance de Bruijn Graph

BALANCE-DBG

- Given a de Bruijn Graph
- Balance all vertices
- Minimize number of new edges

Solve in $\mathcal{O}(k|V| + |E| + |A|)$ time, |A| is the number of added edges

Overview

- Previous Work
- This Work

Connecting de Bruijn Graphs

Authors ① Giulia Bernardini ⑤, Huiping Chen ⑥, Inge Li Gørtz ⑥, Christoffer Krogh ⑥, Grigorios Loukides ⑥, Solon P. Pissis ⑥, Leen Stougie ⑥, Michelle Sweering ®

> Part of: Volume: 35th Annual Symposium on Combinatorial Pattern Matching (CPM 2024)

Series: Leibniz International Proceedings in Informatics (LIPIcs)

22 Conference: Annual Symposium on Combinatorial Pattern Matching (CPM)

> License: Creative Commons Attribution 4.0 International license

> Publication Date: 2024-06-18

Technical University of Denmark Connecting de Bruijn Graphs 25.06.2024


```
Connecting de Bruijn Graphs

Authors ① Giulia Bernardini ②, Huiping Chen ②, Inge Li Gørtz ③, Christoffer Krogh ②, Grigorios Loukides ③, Solon P. Pissis ③, Leen Stougie ③, Michelle Sweering ③

Part of: ② Volume: 35th Annual Symposium on Combinatorial Pattern Matching (CPM 2024)
② Series: Leibniz International Proceedings in Informatics (LIPIcs)
② Conference: Annual Symposium on Combinatorial Pattern Matching (CPM)

License: ② Creative Commons Attribution 4.0 International license

Publication Date: 2024-06-18
```

Commercing de Bruijn Graphs Guille Bernedering of Bruijn Graphs Commercing the Service of the Service of Se

Results

1. Connecting de Bruijn Graphs is NP-hard


```
Connecting de Bruijn Graphs

Authors ① Giulia Bernardini ②, Huiping Chen ③, Inge Li Gørtz ⑤, Christoffer Krogh ②, Grigorios Loukides ⑤, Solon P. Pissis ③, Leen Stougie ②, Michelle Sweering ⑤

Part of: ② Volume: 35th Annual Symposium on Combinatorial Pattern Matching (CPM 2024)
③ Series: Leibniz International Proceedings in Informatics (LIPIcs)
② Conference: Annual Symposium on Combinatorial Pattern Matching (CPM)

License: ② ③ Creative Commons Attribution 4.0 International license

Publication Date: 2024-06-18
```

Results

1. Connecting de Bruijn Graphs is NP-hard

2. 2-approximation for CONNECT-DBG

Connecting de Bruijn Graphs

Connecting de Bruijn Graphs

De Grand Demonstrate 10 de 10 d

- Connecting de Bruijn Grephs - Lande de Lande

Results

- 1. Connecting de Bruijn Graphs is NP-hard
- 2. 2-approximation for CONNECT-DBG*

3. Improved and simplified solution to CONNECT-DBG-P


```
Connecting de Bruijn Graphs

Authors ① Giulia Bernardini ②, Huiping Chen ②, Inge Li Gørtz ②, Christoffer Krogh ②, Grigorios Loukides ③, Solon P. Pissis ③, Leen Stougie ③, Michelle Sweering ③

Part of: ② Volume: 35th Annual Symposium on Combinatorial Pattern Matching (CPM 2024)
③ Series: Leibniz International Proceedings in Informatics (LIPIcs)
② Conference: Annual Symposium on Combinatorial Pattern Matching (CPM)

License: ③ ② Creative Commons Attribution 4.0 International license

Publication Date: 2024-06-18
```

Results

- 1. Connecting de Bruijn Graphs is NP-hard
- 2. 2-approximation for CONNECT-DBG*
- 3. Improved and simplified solution to CONNECT-DBG-P

4. Integer linear program formulation

Counsecting de Bruijn Graphs

Children Semendering 100

The Low Counse Counse

Reduction from Vertex Cover

• Given an undirected graph

- Given an undirected graph
- Choose vertices such that at least one endpoint of every edge is chosen

- Given an undirected graph
- Choose vertices such that at least one endpoint of every
- Minimize number of chosen vertices

$$\mathcal{I}_{VC} = G(V, E) \quad \Rightarrow \quad \mathcal{I}_{C-dBG}$$

$$\mathcal{I}_{VC} = G(V, E) \quad \Rightarrow \quad \mathcal{I}_{C-dBG}$$

$$\mathcal{I}_{VC} = G(V, E) \quad \Rightarrow \quad \mathcal{I}_{C-dBG}$$

e2

$$OPT(\mathcal{I}_{C-dBG}) = 2 + |E| = 5$$

$$OPT(\mathcal{I}_{VC}) = 2$$

 \mathcal{I}_{VC}

$$\mathcal{I}_{C-dBG}$$

$$\mathcal{I}_{C-dBG}$$

$$\mathcal{I}_{C-dBG}$$

$$\mathcal{I}_{C-dBG}$$

$$\mathcal{I}_{C-dBG}$$

 \mathcal{I}_{C-dBG}

- *l* new vertices
- |E| + l new edges

For every new vertex:

For every new vertex:

If 2 adjacent edge-gadgets → choose corresponding vertex

For every new vertex:

- If 2 adjacent edge-gadgets → choose corresponding vertex
- Otherwise choose one endpoint of corresponding edge \mathcal{I}_{C-dBG}

For every new vertex:

- If 2 adjacent edge-gadgets → choose corresponding vertex
- Otherwise choose one endpoint of corresponding edge

Hardness of Connect-DBG

$$OPT(\mathcal{I}_{VC}) = l \Leftrightarrow OPT(\mathcal{I}_{C-dBG}) = |E| + l$$

Approximation of CONNECT-DBG

• Collapse each connected component into a supernode in the complete dBG

• Collapse each connected component into a supernode in the complete dBG

Construct the metric closure

• Construct the metric closure

• Construct the metric closure

• Construct the metric closure

• Use 2-approximation for metric closure of Steiner Tree Problem by Kou et al. (1981)¹

¹Lawrence T. Kou, George Markowsky, and Leonard Herman. A fast algorithm for Steiner trees. *Acta Informatica*, 15:141-145, 1981. doi:10.1007/BF00288961

Improvement of CONNECT-DBG-P

• Aho-Corasick (AC) Machine (KMP generalization)

• Aho-Corasick (AC) Machine (KMP generalization)

- Aho-Corasick (AC) Machine (KMP generalization)
- Add colors

- Aho-Corasick (AC) Machine (KMP generalization)
- Add colors

Add backward edges

- Aho-Corasick (AC) Machine (KMP generalization)
- Add colors
- Add backward edges

- Aho-Corasick (AC) Machine (KMP generalization)
- Add colors
- Add backward edges

Reverse BFS from root:

• Compare backward edges to colors

- Aho-Corasick (AC) Machine (KMP generalization)
- Add colors
- Add backward edges
- Reverse BFS from root:
 - Compare backward edges to colors

- Aho-Corasick (AC) Machine (KMP generalization)
- Add colors
- Add backward edges
- Reverse BFS from root:
 - Compare backward edges to colors
 - Connect with paths

- Aho-Corasick (AC) Machine (KMP generalization)
- Add colors
- Add backward edges
- Reverse BFS from root:
 - Compare backward edges to colors
 - Connect with paths

- Aho-Corasick (AC) Machine (KMP generalization)
- Add colors
- Add backward edges
- Reverse BFS from root:
 - Compare backward edges to colors
 - Connect with paths

- Aho-Corasick (AC) Machine (KMP generalization)
- Add colors
- Add backward edges
- Reverse BFS from root:
 - Compare backward edges to colors
 - Connect with paths

$$\mathcal{O}(k|V|\alpha(|V|) + |E|)$$
 time

- Aho-Corasick (AC) Machine (KMP generalization)
- Add colors
- Add backward edges
- Reverse BFS from root:
 - Compare backward edges to colors
 - Connect with paths

$$\mathcal{O}(k|V|\alpha(|V|) + |E|)$$
 time

 $\alpha(\,\cdot\,)$ is the inverse Ackermann function $\alpha(n)$ grows slower than $\log^* n$

$$\mathcal{O}(k|V|\alpha(|V|) + |E|)$$
 time

$$\mathcal{O}(k|V| + |E| + |A|)$$
 time

$$\mathcal{O}(k|V| + |E| + |A|)$$
 time

2-approximation

$$\mathcal{O}(k|V| + |E| + |A|)$$
 time

Approximation?