Online Context-Free Recognition in OMv Time

Bartłomiej Dudek¹ Paweł Gawrychowski¹

¹University of Wrocław, Poland

Context-free grammar is a tuple: $G = (V_N, V_T, P, S)$ where:

- V_N set of non-terminals
- V_T set of terminals (alphabet)
- P production rules
- S starting non-terminal

Example: productions P for correct bracketing (e.g. [[]]):

$$S \rightarrow \varepsilon$$

 $S \rightarrow SS$
 $S \rightarrow [S]$

Chomsky normal form: all productions are either S
ightarrow AB or S
ightarrow c.

Context-free grammar is a tuple: $G = (V_N, V_T, P, S)$ where:

 $(V_N = \{S\})$

- V_N set of non-terminals
- V_T set of terminals (alphabet) $(V_T = \{[,]\})$
- P production rules
- S starting non-terminal

Example: productions P for correct bracketing (e.g. [[][]]):

$$S \rightarrow \varepsilon$$

 $S \rightarrow SS$
 $S \rightarrow [S]$

Chomsky normal form: all productions are either S
ightarrow AB or S
ightarrow c.

Context-free grammar is a tuple: $G = (V_N, V_T, P, S)$ where:

- *V_N* set of non-terminals
- V_T set of terminals (alphabet)
- P production rules
- S starting non-terminal

Example: productions P for correct bracketing (e.g. [[][]]):

$$S \rightarrow \varepsilon$$

 $S \rightarrow SS$
 $S \rightarrow [S]$

Chomsky normal form: all productions are either $S \rightarrow AB$ or $S \rightarrow c$.

Context-free grammar is a tuple: $G = (V_N, V_T, P, S)$ where:

- V_N set of non-terminals
- V_T set of terminals (alphabet) ($V_T = \{[,]\}$)
- P production rules
- S starting non-terminal

Example: productions P for correct bracketing (e.g. [[][]]):

S ightarrow arepsilon	O ightarrow [
S ightarrow SS	T ightarrow SC
$S \rightarrow OT$	$m{C} ightarrow$]

 $(V_N = \{S, O, T, C\})$

Chomsky normal form: all productions are either $S \rightarrow AB$ or $S \rightarrow c$.

Context-free recognition problem

Input: CFG G (of constant size).

Offline

Given a string w, determine if $w \in L(G)$.

Online

String *w* is revealed one character at a time. For every $t = 1, ..., after seing w[t], determine if w[1..t] \in L(G).$

Context-free recognition problem

Input: CFG G (of constant size).

Offline

Given a string w, determine if $w \in L(G)$.

Online

String *w* is revealed one character at a time. For every t = 1, ..., after seing w[t], determine if $w[1..t] \in L(G)$.

Context-free recognition problem

Input: CFG G (of constant size).

Offline

Given a string w, determine if $w \in L(G)$.

Online

String *w* is revealed one character at a time. For every $t = 1, ..., after seing w[t], determine if w[1..t] \in L(G)$.

Year	Authors	Runtime
1961	Cocke, Younger and Kasami (CYK)	$\mathcal{O}(n^3)$
1980	Graham, Harrison and Ruzzo	$\mathcal{O}(n^3/\log n)$
1995	Rytter	$\mathcal{O}(n^3/\log^2 n)$
2002	Lee	no comb. $\mathcal{O}(gn^{3-arepsilon})$ *
2015	Abboud, Backurs and V. Williams	no comb. $\mathcal{O}(n^{3-arepsilon})$ *
2024		$n^3/2^{\Omega(\sqrt{\log n})}$

Valiant 1975, Rytter 1995

Offline context-free recognition in $\mathcal{O}(n^{\omega})$ time.

- holds also for the offline variant

Year	Authors	Runtime
1961	Cocke, Younger and Kasami (CYK)	$\mathcal{O}(n^3)$
1980	Graham, Harrison and Ruzzo	$\mathcal{O}(n^3/\log n)$
1995	Rytter	$\mathcal{O}(n^3/\log^2 n)$
2002	Lee	no comb. $\mathcal{O}(gn^{3-\varepsilon})^*$
2015	Abboud, Backurs and V. Williams	no comb. $\mathcal{O}(n^{3-\varepsilon})^*$
2024	this work	$n^3/2^{\Omega(\sqrt{\log n})}$

Valiant 1975, Rytter 1995

Offline context-free recognition in $\mathcal{O}(n^{\omega})$ time.

- holds also for the offline variant

Year	Authors	Runtime
1961	Cocke, Younger and Kasami (CYK)	$\mathcal{O}(n^3)$
1980	Graham, Harrison and Ruzzo	$\mathcal{O}(n^3/\log n)$
1995	Rytter	$\mathcal{O}(n^3/\log^2 n)$
2002	Lee	no comb. $\mathcal{O}(gn^{3-arepsilon})^*$
2015	Abboud, Backurs and V. Williams	no comb. $\mathcal{O}(n^{3-arepsilon})$ *
2024	this work	$n^3/2^{\Omega(\sqrt{\log n})}$

Valiant 1975, Rytter 1995

Offline context-free recognition in $\mathcal{O}(n^{\omega})$ time.

holds also for the offline variant

Year	Authors	Runtime
1961	Cocke, Younger and Kasami (CYK)	$\mathcal{O}(n^3)$
1980	Graham, Harrison and Ruzzo	$\mathcal{O}(n^3/\log n)$
1995	Rytter	$\mathcal{O}(n^3/\log^2 n)$
2002	Lee	no comb. $\mathcal{O}(gn^{3-arepsilon})^*$
2015	Abboud, Backurs and V. Williams	no comb. $\mathcal{O}(n^{3-arepsilon})$ *
2024	this work	$n^3/2^{\Omega(\sqrt{\log n})}$

Valiant 1975, Rytter 1995

Offline context-free recognition in $\mathcal{O}(n^{\omega})$ time.

* - holds also for the offline variant

CYK algorithm

 $\mathcal{O}(n^3g)$ dynamic approach based on:

$$\begin{cases} A \stackrel{\star}{\rightarrow} w[i..k] \\ B \stackrel{\star}{\rightarrow} w[k+1..j] \\ (C \rightarrow AB) \in P \end{cases} \implies C \stackrel{\star}{\rightarrow} w[i..j] \end{cases}$$

for
$$j = 1..$$
 do
for $(C \rightarrow w[j]) \in P$ do
 $D^C[j, j] := true$
for $i = (j - 1)..1$ do
for $k = i..(j - 1)$ do
for $(C \rightarrow AB) \in P$ do
if $D^A[i, k] \wedge D^B[k + 1, j]$ then
 $D^C[i, j] := true$

Works also for the online case!

CYK algorithm

 $\mathcal{O}(n^3g)$ dynamic approach based on:

$$\begin{cases} A \stackrel{\star}{\rightarrow} w[i..k] \\ B \stackrel{\star}{\rightarrow} w[k+1..j] \\ (C \rightarrow AB) \in P \end{cases} \implies C \stackrel{\star}{\rightarrow} w[i..j] \end{cases}$$

for
$$j = 1..$$
 do
for $(C \rightarrow w[j]) \in P$ do
 $D^C[j, j] := true$
for $i = (j - 1)..1$ do
for $k = i..(j - 1)$ do
for $(C \rightarrow AB) \in P$ do
if $D^A[i, k] \land D^B[k + 1, j]$ then
 $D^C[i, j] := true$

Works also for the online case!

CYK algorithm

 $\mathcal{O}(n^3g)$ dynamic approach based on:

$$\begin{cases} A \stackrel{\star}{\rightarrow} w[i..k] \\ B \stackrel{\star}{\rightarrow} w[k+1..j] \\ (C \rightarrow AB) \in P \end{cases} \implies C \stackrel{\star}{\rightarrow} w[i..j] \end{cases}$$

for
$$j = 1..$$
 do
for $(C \rightarrow w[j]) \in P$ do
 $D^C[j, j] := true$
for $i = (j - 1)..1$ do
for $k = i..(j - 1)$ do
for $(C \rightarrow AB) \in P$ do
if $D^A[i, k] \land D^B[k + 1, j]$ then
 $D^C[i, j] := true$

Works also for the online case!

Valiant's approach

Calculate DP recursively for w[1..n/2] and w[(n/2 + 1)..n] and merge the results: need to process all substrings that contain w[n/2].

Difficulty: we can extend the infix in both directions.

Valiant's approach

Calculate DP recursively for w[1..n/2] and w[(n/2 + 1)..n] and merge the results: need to process all substrings that contain w[n/2].

Difficulty: we can extend the infix in both directions.

Valiant's idea (Rytter's presentation)

Create a graph in which a node (i, j) stores all non-terminals producing w[i..j], for $i \le n/2 < j$ and e.g. edges "down" correspond to extending a word at the beginning (to the left).

Observation: moving from (i, j) to (i', j) does not depend on j!

We only need to know the non-terminal producing w[i...j].

Valiant 1975

We can calculate the transitive closure of the graph in $\mathcal{O}(n^{\omega})$ time.

Valiant's idea (Rytter's presentation)

Create a graph in which a node (i, j) stores all non-terminals producing w[i..j], for $i \le n/2 < j$ and e.g. edges "down" correspond to extending a word at the beginning (to the left).

Observation: moving from (i, j) to (i', j) does not depend on j!

We only need to know the non-terminal producing w[i..j].

Valiant 1975

We can calculate the transitive closure of the graph in $\mathcal{O}(n^{\omega})$ time.

Valiant's idea (Rytter's presentation)

Create a graph in which a node (i, j) stores all non-terminals producing w[i..j], for $i \le n/2 < j$ and e.g. edges "down" correspond to extending a word at the beginning (to the left).

Observation: moving from (i, j) to (i', j) does not depend on j!

We only need to know the non-terminal producing w[i..j].

Valiant 1975

We can calculate the transitive closure of the graph in $\mathcal{O}(n^{\omega})$ time.

Why matrix multiplication?

Observation

Test if we can extend (i, j) to (i', j) based only on the non-terminal producing w[i..j], independently on *j*.

Jumps "to the left":

$$V[i',i]^{X,Y} = 1 \iff \exists_{Z \in V_N} \Big((X \to ZY) \in P \land Z \xrightarrow{\star} w[i'..i-1] \Big)$$

(the infix starting at i and produced by Y can be extended to an infix starting at i' and produced by X)

Multiple extensions in one direction: matrix multiplications!

Why matrix multiplication?

Observation

Test if we can extend (i, j) to (i', j) based only on the non-terminal producing w[i..j], independently on *j*.

(the infix starting at i and produced by Y can be extended to an infix starting at i' and produced by X)

Multiple extensions in one direction: matrix multiplications!

Why matrix multiplication?

Observation

Test if we can extend (i, j) to (i', j) based only on the non-terminal producing w[i..j], independently on *j*.

(the infix starting at i and produced by Y can be extended to an infix starting at i' and produced by X)

Multiple extensions in one direction: matrix multiplications!

New character \approx new column in the considered matrix/graph, so:

Online Matrix-Vector Multiplication (OMv)

Given a matrix $M \in \{0, 1\}^{n \times n}$, and a sequence of vectors $v_1, \ldots, v_n \in \{0, 1\}^n$, the task is to output Mv_i before seeing v_{i+1} , for all $i = 1, \ldots, n-1$.

Larsen, Williams [SODA 2017]

OMv can be solved in $n^3/2^{\Omega(\sqrt{\log n})}$ time (w.h.p.).

OMv Hypothesis by Henzinger et al. [STOC 2015]

New character \approx new column in the considered matrix/graph, so:

Online Matrix-Vector Multiplication (OMv)

Given a matrix $M \in \{0, 1\}^{n \times n}$, and a sequence of vectors $v_1, \ldots, v_n \in \{0, 1\}^n$, the task is to output Mv_i before seeing v_{i+1} , for all $i = 1, \ldots, n-1$.

Larsen, Williams [SODA 2017]

OMv can be solved in $n^3/2^{\Omega(\sqrt{\log n})}$ time (w.h.p.).

OMv Hypothesis by Henzinger et al. [STOC 2015]

New character \approx new column in the considered matrix/graph, so:

Online Matrix-Vector Multiplication (OMv)

Given a matrix $M \in \{0, 1\}^{n \times n}$, and a sequence of vectors $v_1, \ldots, v_n \in \{0, 1\}^n$, the task is to output Mv_i before seeing v_{i+1} , for all $i = 1, \ldots, n-1$.

Larsen, Williams [SODA 2017]

OMv can be solved in $n^3/2^{\Omega(\sqrt{\log n})}$ time (w.h.p.).

OMv Hypothesis by Henzinger et al. [STOC 2015]

New character \approx new column in the considered matrix/graph, so:

Online Matrix-Vector Multiplication (OMv)

Given a matrix $M \in \{0, 1\}^{n \times n}$, and a sequence of vectors $v_1, \ldots, v_n \in \{0, 1\}^n$, the task is to output Mv_i before seeing v_{i+1} , for all $i = 1, \ldots, n-1$.

Larsen, Williams [SODA 2017]

OMv can be solved in $n^3/2^{\Omega(\sqrt{\log n})}$ time (w.h.p.).

OMv Hypothesis by Henzinger et al. [STOC 2015]

Maintain a division of the current prefix into powers of 2:

For every interval $\mathcal{I} = [p, p + s)$ create a process that:

- runs for *s* queries $Q_{p+s}, Q_{p+s+1}, \dots, Q_{p+2s-1}$ where $Q_t = \{(i, E) : E \xrightarrow{*} w[i..t], i \in [p+s..t]\}$
- processes all infixes of w that start in \mathcal{I} and end in t

(formally it computes: $A_t = \{(i, E) : E \xrightarrow{\star} w[i..t], i \in \mathcal{I}\}$)

is updated after every query (w[t] becomes part of the string)
 takes total s³/2^{Ω(√log s)} randomized time.

Maintain a division of the current prefix into powers of 2:

For every interval $\mathcal{I} = [p, p + s)$ create a process that:

• runs for *s* queries $Q_{p+s}, Q_{p+s+1}, \dots, Q_{p+2s-1}$ where $Q_t = \{(i, E) : E \xrightarrow{\star} w[i..t], i \in [p + s..t]\}$

• processes all infixes of w that start in \mathcal{I} and end in t

(formally it computes: $A_t = \{(i, E) : E \xrightarrow{*} w[i..t], i \in \mathcal{I}\}$)

is updated after every query (w[t] becomes part of the string)
 takes total s³/2^{Ω(√log s)} randomized time.

Maintain a division of the current prefix into powers of 2:

For every interval $\mathcal{I} = [p, p + s)$ create a process that:

- runs for *s* queries $Q_{p+s}, Q_{p+s+1}, \dots, Q_{p+2s-1}$ where $Q_t = \{(i, E) : E \xrightarrow{\star} w[i..t], i \in [p + s..t]\}$
- processes all infixes of w that start in \mathcal{I} and end in t

(formally it computes: $A_t = \{(i, E) : E \xrightarrow{\star} w[i..t], i \in \mathcal{I}\}$)

is updated after every query (w[t] becomes part of the string)
 takes total s³/2^{Ω(√log s)} randomized time.

Maintain a division of the current prefix into powers of 2:

For every interval $\mathcal{I} = [p, p + s)$ create a process that:

- runs for *s* queries $Q_{p+s}, Q_{p+s+1}, \dots, Q_{p+2s-1}$ where $Q_t = \{(i, E) : E \xrightarrow{\star} w[i..t], i \in [p + s..t]\}$
- processes all infixes of w that start in \mathcal{I} and end in t

(formally it computes: $A_t = \{(i, E) : E \xrightarrow{\star} w[i..t], i \in \mathcal{I}\}$)

- is updated after every query (w[t] becomes part of the string)
- takes total $s^3/2^{\Omega(\sqrt{\log s})}$ randomized time.

Maintain a division of the current prefix into powers of 2:

For every interval $\mathcal{I} = [p, p + s)$ create a process that:

- runs for *s* queries $Q_{p+s}, Q_{p+s+1}, \dots, Q_{p+2s-1}$ where $Q_t = \{(i, E) : E \xrightarrow{\star} w[i..t], i \in [p + s..t]\}$
- processes all infixes of w that start in \mathcal{I} and end in t

(formally it computes: $A_t = \{(i, E) : E \xrightarrow{\star} w[i..t], i \in \mathcal{I}\}$)

- is updated after every query (w[t] becomes part of the string)
- takes total $s^3/2^{\Omega(\sqrt{\log s})}$ randomized time.

While processing the *t*-th character, the *j*-th process (for $[b_j, e_j)$):

- gets: $Q_t^j = \{(i, E) : E \xrightarrow{\star} w[i..t], i \in [e_j..t]\}$
- computes: $A_t^I = \{(i, E) : E \stackrel{\star}{\rightarrow} w[i..t], i \in [b_j..e_j)\}$

Note:
$$Q_t^j = A_t^{j+1} \cup A_t^{j+2}$$
..

$$\sum_{k=0}^{\log n} \frac{n}{2^k} \cdot \left(2^k\right)^3 / 2^{\Omega(\sqrt{k})} = n \cdot \sum_{k=0}^{\log n} 2^{2k - \Omega(\sqrt{k})} = n^3 / 2^{\Omega(\sqrt{\log n})}$$

While processing the *t*-th character, the *j*-th process (for $[b_j, e_j)$):

- gets: $Q_t^j = \{(i, E) : E \xrightarrow{\star} w[i..t], i \in [e_j..t]\}$
- computes: $A'_t = \{(i, E) : E \xrightarrow{\star} w[i..t], i \in [b_j..e_j)\}$

Note:
$$Q_t^j = A_t^{j+1} \cup A_t^{j+2}$$
..

$$\sum_{k=0}^{\log n} \frac{n}{2^k} \cdot \left(2^k\right)^3 / 2^{\Omega(\sqrt{k})} = n \cdot \sum_{k=0}^{\log n} 2^{2k - \Omega(\sqrt{k})} = n^3 / 2^{\Omega(\sqrt{\log n})}$$

While processing the *t*-th character, the *j*-th process (for $[b_j, e_j)$):

- gets: $Q_t^j = \{(i, E) : E \xrightarrow{\star} w[i..t], i \in [e_j..t]\}$
- computes: $A_t^j = \{(i, E) : E \xrightarrow{\star} w[i..t], i \in [b_j..e_j)\}$

Note:
$$Q_t^j = A_t^{j+1} \cup A_t^{j+2}$$
..

$$\sum_{k=0}^{\log n} \frac{n}{2^k} \cdot \left(2^k\right)^3 / 2^{\Omega(\sqrt{k})} = n \cdot \sum_{k=0}^{\log n} 2^{2k - \Omega(\sqrt{k})} = n^3 / 2^{\Omega(\sqrt{\log n})}$$

While processing the *t*-th character, the *j*-th process (for $[b_j, e_j)$):

- gets: $Q_t^j = \{(i, E) : E \xrightarrow{\star} w[i..t], i \in [e_j..t]\}$
- computes: $A_t^j = \{(i, E) : E \xrightarrow{\star} w[i..t], i \in [b_j..e_j)\}$

Note:
$$Q_t^j = A_t^{j+1} \cup A_t^{j+2}$$
..

$$\sum_{k=0}^{\log n} \frac{n}{2^k} \cdot \left(2^k\right)^3 / 2^{\Omega(\sqrt{k})} = n \cdot \sum_{k=0}^{\log n} 2^{2k - \Omega(\sqrt{k})} = n^3 / 2^{\Omega(\sqrt{\log n})}$$

Doubly-dynamic OMv: in every query we get next column of the matrix and the vector to multiply with.

Theorem

We can process in $s^3/2^{\Omega(\sqrt{\log s})}$ time a sequence of *s* vectors $v_1, q_1, v_2, q_2, \ldots$ where $|v_i| = s, |q_i| = i$ in which we need to calculate $(v_1, \ldots, v_i) \times q_i$ online, before seeing v_{i+1} .

- divide the processed matrix of size s × i into submatrices of sizes that are (decreasing) powers of 2
- divide every s × 2^k submatrix into s/2^k matrices of size 2^k × 2^k and build OMv data structure on each of them.

Doubly-dynamic OMv: in every query we get next column of the matrix and the vector to multiply with.

Theorem

We can process in $s^3/2^{\Omega(\sqrt{\log s})}$ time a sequence of *s* vectors $v_1, q_1, v_2, q_2, \ldots$ where $|v_i| = s, |q_i| = i$ in which we need to calculate $(v_1, \ldots, v_i) \times q_i$ online, before seeing v_{i+1} .

- divide the processed matrix of size s × i into submatrices of sizes that are (decreasing) powers of 2
- divide every s × 2^k submatrix into s/2^k matrices of size 2^k × 2^k and build OMv data structure on each of them.

Doubly-dynamic OMv: in every query we get next column of the matrix and the vector to multiply with.

Theorem

We can process in $s^3/2^{\Omega(\sqrt{\log s})}$ time a sequence of *s* vectors $v_1, q_1, v_2, q_2, \ldots$ where $|v_i| = s, |q_i| = i$ in which we need to calculate $(v_1, \ldots, v_i) \times q_i$ online, before seeing v_{i+1} .

- divide the processed matrix of size s × i into submatrices of sizes that are (decreasing) powers of 2
- divide every s × 2^k submatrix into s/2^k matrices of size 2^k × 2^k and build OMv data structure on each of them.

Doubly-dynamic OMv: in every query we get next column of the matrix and the vector to multiply with.

Theorem

We can process in $s^3/2^{\Omega(\sqrt{\log s})}$ time a sequence of *s* vectors $v_1, q_1, v_2, q_2, \ldots$ where $|v_i| = s, |q_i| = i$ in which we need to calculate $(v_1, \ldots, v_i) \times q_i$ online, before seeing v_{i+1} .

- divide the processed matrix of size s × i into submatrices of sizes that are (decreasing) powers of 2
- divide every s × 2^k submatrix into s/2^k matrices of size 2^k × 2^k and build OMv data structure on each of them.

Doubly-dynamic OMv: in every query we get next column of the matrix and the vector to multiply with.

Theorem

We can process in $s^3/2^{\Omega(\sqrt{\log s})}$ time a sequence of *s* vectors $v_1, q_1, v_2, q_2, \ldots$ where $|v_i| = s, |q_i| = i$ in which we need to calculate $(v_1, \ldots, v_i) \times q_i$ online, before seeing v_{i+1} .

Sketch of the proof:

- divide the processed matrix of size s × i into submatrices of sizes that are (decreasing) powers of 2
- divide every s × 2^k submatrix into s/2^k matrices of size 2^k × 2^k and build OMv data structure on each of them.

Thank you!