June 26, 2024 Contributed talk 4
CPM 2024 @ Fukuoka, Japan [string algorithms and data structures]

Shortest cover after edit

Kazuki Mitani’ Graduated in March, ‘24 @

Takuya Mieno?
Kazuhisa Seto’

Takashi Horiyama

1 Hokkaido University
2 University of Electro-Communications

. - 2/18
Basic definitions: borders and covers

® A string B is called a border of another string T it B occurs both

as a pretix and as a suffix of T.

T,= a b ababaababa

the border = the longest border

® A string Cis called a cover (a.k.a. quasi-period) of T it each

character of T lies within some occurrence of C.

,= a bababaababa

the cover = the shortest cover

® By definition, a cover of T must be a border of T.

Borders and covers when string is edited 1

® Observe how the borders and covers change as we edit T.

Borders:

I,= ababababaaaablbbbbalbaba

T} = ababababaaaabbaba

Covers:

I,= ababaababaalbabaabababla

l

T, = ababaababaaa

| Can we quickly capture the changes in the border/the cover?

A SIRIRE

SR AT AR AR e e s i

4/18
The problems and our results

Longest Border|After-Edit|(LBAE) query: (Each query is applied to)

Preprocess : String T of IengtV the original string I.

Query : Substitute TTi.. j] with string w.

Output : The length of the border of the edited string 7.

Shortest Cover|After-Edit)(SCAE) query:

Preprocess : String T of length n.

Query : Substitute TTi.. j] with string w.
Output : The length of the cover of the edited string 7.

Theorem (main result).

The longest border/shortest cover after-edit queries can be answered

in O(|w|logn) time after O(n)-time preprocessing.

T We claimed O(|w| + log n) time but there was a flaw...@]

Related work s

® For static strings, the border and the cover can be computed in
linear time [Knuth, Morris, Pratt, '77], [Apostolico et al., '91], [Breslauer, '92].

® For dynamic strings:
> The border:
- O(n°Y) update/query time [Amir et al., 19].
- O(polylog(n)) update/query time (w.h.p.) is possible with
Internal Pattern Matching and Longest Common Extension
on a dynamic string [Charalampopoulos et al., '20].
> The cover:
- O(n) time for online string [Breslauer, '92].
- We couldn’t find any other previous work :(

This talk

® \We focus only on the SCAE queries.
Shortest Cover After-Edit (SCAE) query:

6/18

Preprocess : String T of lengt
Query : Substitute TTi.. /]
Output : The length of the cover of the edited string 7.

N n.

with string w.

® [et7T'=LwRw
® Assume |L| >

> It |w| > n/2, a known O(n) = O(|w|) time algorithm is optimal.

nere L =T]|

..i—1]and R=T[j+ 1..n].

R| and |w

< n/2.

T/

i J
{

7/18

Overview of SCAE algorithm

The border of T".
\ /

\/1. Compute bom’(T’) by our LBAE algorithm (omitted in this talk);
Copte threearrys Bord Range and Cover for strlng Lw
3. It |bord(T)| > |T"|/2:
4. Run subroutine for periodic case;
5. else:
6. Run subroutine for non-periodic case;
1.
Bord
2. Range
Cover

Three arrays: Bord, Range, Cover [Breslauer, ‘92] 8/18

® Breslauer's online algorithm maintains arrays Bord, Range, and
Cover for an online text T defined as follows:

» Bord|i]

» Rangeli] stores the length of the longest pretix of T'which can

be covered by TT1..i].

» Cover[i] stores the length of the cover of T[1..i].

stores the length of the border of T[1..i].

E.g. 1 2 3 4 5 6 7 8 9 10=1l
= a b a b a b a a b a-a

Bord[0 [0 [1]2]3]4]5 K

Range | 1 |6 10| 4 6 | 7 10| 11
Cover|1|2]|3]2 2 |3 3 |11

Bord[3] = | bord(aba)| = 1.

Range[3] =10 (aba can cover T[1..10] and cannot cover any longer prefix).

Cover[3] = |aba| = 3.

Updating three arrays for given edit operation "

Bord[{]: the length of the border of T[1..7].

Rangel[i]: the length of the longest prefix of T which can be covered by T[1..i].
Coverl[i]: the length of the cover of T[1..i].

After O(n)-time preprocessing, given a substitution query, we can
access any k elements of Bord/Range/Cover of Lw in a total of
O(|w|logn + k) time.

T L

Bord | |
Range O(|w|logn) time
Cover

10/18

Overview of SCAE algorithm

The border of T".
\/
v Compute bord(T") by our LBAE algorithm (omitted in this talk);

V2. Compute three arrays Bord Range and Cover for strlng Lw
A |bord(TH| > | T2

Run subroutine for periodic case;
else:

Run subroutine for non-periodic case;
2. Range

Cover 4. Periodic case

Periodic case: |bord(T")| > |T"|/2

11/18

® If |bord(T)| > |T'|/2 then T' = (uv)*u s.t. bord(T") = (uv)*'u.

T/ p— u

Bord

Range

Cover

<[Lemma 1 }

® |n the periodic case, we need to have some discussions that take into

account the periodicity of T" carefully...@

® Then, we can compute co/\<(T’) quickly by using Range array and

Cover array of Lw.

The cover of T"

12/18

Overview of SCAE algorithm

The border of T".
\/

\4
v Compute bord(T") by our LBAE algorithm (omitted in this talk);

V2. Compute three arrays Bord, Range, and Cover for string Lw;
V3. If |bord(T)| > |T'|/2:

\/4. Run subroutine for periodic case;

else:

Run subroutine for non-periodic case; i

T L

2. Range o
Cover 6. Non-periodic case

13/18

Non-periodic case: |bord(T)| < |T'|/2
® \We use the following fact:

Lemma 2 ([Breslauer, '92]).

For any string T, cov(T") is either cov(bord(T")) or T" itself.

1. Compute x = cov(bord(T"));
» Since |bord(T)| < |T'|/2 < |Lw]|, we can obtain
x = cov(bord(T")) by retering to Cover[| bord(T") |].

T L

Bord
Range

Cover .

2. Determine if x = cov(bord(T")) covers T’ or not;

14/18

Can x = cov(bord(T")) cover T'? (1/3)

® Let s be the maximum length of the pretix of Lw that x can cover.
® Such s can be obtained by accessing Range[|x|] of Lw.

r L v [

Range |

® Similarly, we can obtain the maximum length 7 of the suffix of wR
that x can cover.

® [fs+1>|T|, then xis a cover of T". Output x.
® Otherwise (like the figure above) ... (£ go to the next page.)

15/18

Can x = cov(bord(T")) cover T'? (2/3)

® Ifs+1<|T'|, we check the existence of an occurrence of x
beginning in L and ending in R.

r e v [

— —
———— S — D—

T

® |f such an occurrence exists, the occurrence is the concatenation
of some border of Lw and some prefix of R as below.

T/

X

—— preflx of R

™~ border of Lw "

16/18

Can x = cov(bord(T")) cover T'? (3/3)
r :
’ i) | CE —-} LCE

® Thus, we can check the existence of such an occurrence of x by

applying an LCE query from everyAborder of Lw to the right.

O(|Lw|) = O(n) borders in the worst case...

® For speeding up, we utilize the periodicity of borders:

The set of borders of string T can be divided into O(log n) groups

w.r.t. their smallest periods.

® For each group, extending at most one border is enough to find
such x. Thus only O(log n) LCE queries are sufficient.

17/18

)0(|w|10gn) time]
/

&~

v Compute bord(T") by our LBAE algorithm (omitted in this talk);

Overview of SCAE algorithm

V2. Compute three arrays Bord, Range, and Cover for string Lw;

A
J3 i ‘bOl’d(T’)‘ > ‘T,l/z [0(|w|10gn)time]

\/4. Run subroutine for periodic case; < O(1) time]

\/5. else:

\/6. Run subroutine for non-periodic case;< O(log n) time]

Theorem (main result).

The longest border/shortest cover queries can be answered in

O(|w|logn) time after O(n)-time preprocessing.

. 18/18
Conclusions and future work

Longest Border/Shortest Cover After-Edit (LBAE/SCAE) queries:

Preprocess : String T of length n.

Query : Substitute T[i.. j] with string w.

Output : The length of the border/the cover of the edited string 7.

Theorem (main result).

The longest border/shortest cover queries can be answered in
O(|w|logn) time after O(n)-time preprocessing.

® Future work
» Speeding up the query time.
- More detailed analysis may lead O(|w| + log n) query time.

- Can we further improve it to O(|w| + loglogn) time?
» How can we compute the cover in fully-dynamic setting?

