CPM 2024

A data structure for the maximumsum segment problem with offsets

Yoshifumi Sakai Tohoku University

Maximum-sum segment (MSS) problem

Which segment of a given numerical sequence maximizes the sum of its elements?

Kadane's linear-time algorithm (Bentley 1984)

Variants and related problems

- All maximal local MSSs (MLMSSs) (Ruzzo & Tompa 1999)
- Maximum-density segment (Chung & Lu 2005)
- Range MSS query (Chen & Chao 2007)
- Given number of non-overlapping segments that maximize the sum of their elements (Bengtsson & Chen 2007)
- Density constrained MSS (Cheng et al. 2009)
- Range position specific MLMSS query (Sakai 2018)
- MSS with uncertainty (Yu et al. 2021)

Offset-MSS problem

Given a numerical sequence X and a real number a, the offset-MSS problem is to find an MSS of X_a , where X_a is obtained by replacing each element x of Xwith x - a.

Data structure proposed

Number-line partition by a with the same MSS

- \checkmark $O(n \log^2 n)$ -time, O(n)-space constructible for any X of length n
- ✓ Supporting $O(\log n)$ -time queries of an MSS of X_a for any a

Notations

 $X_a(i,j)$: Subsequence of X_a at position between i and j

 $S_a(i,j)$: Sum of all elements in $X_a(i,j)$

 $\alpha(i,j)$: Minimum a having some k with $i \le k \le j$ such that $S_a(i,k) = 0$ or $S_a(k,j) = 0$

 $\kappa(i,j)$: Any k achieving $\alpha(i,j)$

Example:
$$4 5 6 7 8$$

$$X_0(4,8) = 19 15 16 11 13$$

$$\left(X_{12}(4,8) = 7 3 4 -1 1\right)$$

Basic lemma

If $a \le \alpha(i,j)$, then (i,j) is an MSS of $X_a(i,j)$

If $a \ge \alpha(i,j)$, then an MSS of $X_a(i,j)$ can be found as any MSS of at least one of $X_a(i,\kappa(i,j)-1)$ and $X_a(\kappa(i,j)+1,j)$

Corollary of basic lemma

 $\tau(i,j)$: Tree such that (i,j) is the root and any vertex (g,h) has $(g,\kappa(g,h)-1)$ and $(\kappa(g,h)+1,h)$ as its children, if $\alpha(g,h) \leq \alpha(i,j)$, and is a leaf, otherwise

T: Tree such that (1,n) is the root and any vertex (i,j) has all leaves of $\tau(i,j)$ as its children, if $i \leq j$, and is a leaf, otherwise

Any vertex (g,h) of T maximizing $S_a(g,h)$ is an MSS of X_a

Example of T (leaves are omitted; labels indicate $\alpha(i,j)$)

Cor. of cor. of the basic lemma

 (i_p, j_p) : Any vertex (i, j) of T with j - i + 1 = pthat maximizes $S_0(i, j)$

Any (i_p, j_p) maximizing $S_a(i_p, j_p)$ is an MSS of X_a

For any vertex
$$(g,h)$$
 of T with $h-g+1=p$ and any a ,
$$S_a(g,h)=S_0(g,h)-ap\leq S_0(i_p,j_p)-ap=S_a(i_p,j_p)$$

Example of T (leaves are ommied; labels indicate $S_0(i,j)$)

Cor. of cor. of the basic lemma

 (i_r, j_r) is an MSS of X_a , where the convex hull for all points $(p, S_0(i_p, j_p))$ is tangent to a straight line of slope a at vertex $(r, S_0(i_r, j_r))$

$$\left\{\begin{array}{l} \text{If } q \leq r \text{, then} \\ S_a(i_r,j_r) \geq S_a(i_q,j_q) \iff a \leq \frac{S_0(i_r,j_r) - S_0(i_q,j_q)}{r-q} \end{array}\right\}$$

Example of the convex hull

Algorithm to construct the data structure

- 1. Enumerate all vertices of T $O(nq) \text{ time using } q\text{-time queries of } \alpha(i,j) \text{ and } \kappa(i,j)$
- 2. Determine the convex hull for all points $(p, S_0(i_p, j_p))$ O(n) time

Redefinition of $\alpha(i,j)$ and $\kappa(i,j)$

 $\alpha(i,j)$: Minimum a having some k with $i \le k \le j$ such that $S_a(i,k) = 0$ or $S_a(k,j) = 0$

 $\delta(i,j)$: Density $S_0(i,j)/(j-i+1)$ of $X_0(i,j)$

 $\kappa'(i,j)$: Any k with $i \le k \le j$ minimizing $\delta(i,k)$

 $\kappa''(i,j)$: Any k with $i \le k \le j$ minimizing $\delta(k,j)$

 $\alpha(i,j)$: Minimum of $\delta(i,\kappa'(i,j))$ and $\delta(\kappa''(i,j),j)$

Basic idea for determining $\kappa'(i,j)$

H'(i,j): Convex hull for points $(k,S_0(1,k))$ with $i \le k \le j$

If a line passing through point $(i-1,S_0(1,i-1))$ is tangent to H'(i,j) at vertex $(k,S_0(1,k))$, then $\kappa'(i,j)=k$

$O(\log^2 n)$ query-time using $O(n \log n)$ space

Storing all H'[l,m] with $1 \le l \le \log_2 n$ and $1 \le m \le n/2^l$, where H'[l,m] denotes $H'(2^l(m-1)+1,2^lm)$

Reduction of space to O(n)

Representing H'[l,m] based on H'[l-1,2m-1] and H'[l-1,2m] recursively

Conclusion

Given a numerical sequence X and a real number α , the offset-MSS problem is to find an MSS of X_{α}

Number-line partition by a with the same MSS

- ✓ $O(n \log^2 n)$ -time, O(n)-space constructible for any X of length n
- ✓ Supporting $O(\log n)$ -time queries of an MSS of X_a for any a

O(n)-time constructible?