Simplified Tight Bounds for Monotone Minimal Perfect Hashing

Dmitry Kosolobov

Ural Federal University, Ekaterinburg, Russia

- - E - F

Content

- Monotone minimal perfect hash function
- Known upper and lower bounds
- Model and counting argument
- Let's count

★ E > < E >

< 注)→ < 注)→

A ₽

Given $a_1 < \cdots < a_n$ from $[1..u] = \{1, 2, ..., u\}$, compute a data structure with queries $f : [1..u] \rightarrow [1..n]$:

- f(x) = k if $x = a_k$ for some $k \in [1..n]$
- f(x) is arbitrary if $x \notin \{a_1, \ldots, a_n\}$

白 ト イヨ ト イヨ ト

Given $a_1 < \cdots < a_n$ from $[1..u] = \{1, 2, ..., u\}$, compute a data structure with queries $f : [1..u] \rightarrow [1..n]$:

•
$$f(x) = k$$
 if $x = a_k$ for some $k \in [1..n]$

•
$$f(x)$$
 is arbitrary if $x \notin \{a_1, \ldots, a_n\}$

Example

$$u = 16, \{a_1, \dots, a_5\} = \{3, 6, 7, 10, 14\}$$
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
MMPHF colors the segment [1..u]: the color of x is $f(x)$
color 1, color 2, color 3, color 4, color 5

A ₽

물어 수 물어

Restriction throughout the talk: $u \leq 2^{2^{p \operatorname{oly}(n)}}$

물 에서 물 에

ł

Restriction throughout the talk: $u \le 2^{2^{p \circ ly(n)}}$ Upper bound: $O(n \log \log \log \log u)$ bits, $O(\log u)$ query time [Belazzougui, Boldi, Pagh, Vigna SODA'09]

3 N A 3 N

Restriction throughout the talk: $u \le 2^{2^{p \circ ly(n)}}$ Upper bound: $O(n \log \log \log \log u)$ bits, $O(\log u)$ query time [Belazzougui, Boldi, Pagh, Vigna SODA'09]

Can this space be lowered?

3 N A 3 N

Restriction throughout the talk: $u \leq 2^{2^{p \circ ly(n)}}$ Upper bound: $O(n \log \log \log \log u)$ bits, $O(\log u)$ query time [Belazzougui, Boldi, Pagh, Vigna SODA'09]

Can this space be lowered? NO...

Lower bound: $\Omega(n)$ bits

[Belazzougui, Boldi, Pagh, Vigna SODA'11]

Restriction throughout the talk: $u \le 2^{2^{p \circ ly(n)}}$ Upper bound: $O(n \log \log \log u)$ bits, $O(\log u)$ query time [Belazzougui, Boldi, Pagh, Vigna SODA'09]

Can this space be lowered? NO...

Lower bound: $\Omega(n)$ bits

[Belazzougui, Boldi, Pagh, Vigna SODA'11] Lower bound: $\Omega(n \log \log \log u)$ bits for all $u \ge n2^{2\sqrt{\log \log n}}$ [Assadi, Farach-Colton, Kuszmaul SODA'23]

Restriction throughout the talk: $u < 2^{2^{p \circ ly(n)}}$ Upper bound: $O(n \log \log \log u)$ bits, $O(\log u)$ query time [Belazzougui, Boldi, Pagh, Vigna SODA'09] Can this space be lowered? NO... Lower bound: $\Omega(n)$ bits [Belazzougui, Boldi, Pagh, Vigna SODA'11] Lower bound: $\Omega(n \log \log \log u)$ bits for all $u > n2^{2^{\sqrt{\log \log n}}}$ [Assadi, Farach-Colton, Kuszmaul SODA'23] Lower bound: $\Omega(n \log \log \log \frac{u}{n})$ bits for all $u \ge (1 + \epsilon)n$ ours

Restriction throughout the talk: $u < 2^{2^{p \circ ly(n)}}$ Upper bound: $O(n \log \log \log u)$ bits, $O(\log u)$ query time [Belazzougui, Boldi, Pagh, Vigna SODA'09] Can this space be lowered? NO... Lower bound: $\Omega(n)$ bits [Belazzougui, Boldi, Pagh, Vigna SODA'11] Lower bound: $\Omega(n \log \log \log u)$ bits for all $u > n2^{2^{\sqrt{\log \log n}}}$ [Assadi, Farach-Colton, Kuszmaul SODA'23] Lower bound: $\Omega(n \log \log \log \frac{u}{n})$ bits for all $u \ge (1 + \epsilon)n$ ours Tight upper bound: $O(n \log \log \log \frac{u}{n})$

Restriction throughout the talk: $u < 2^{2^{p \circ ly(n)}}$ Upper bound: $O(n \log \log \log u)$ bits, $O(\log u)$ query time [Belazzougui, Boldi, Pagh, Vigna SODA'09] Can this space be lowered? NO... Lower bound: $\Omega(n)$ bits [Belazzougui, Boldi, Pagh, Vigna SODA'11] Lower bound: $\Omega(n \log \log \log u)$ bits for all $u > n2^{2^{\sqrt{\log \log n}}}$ [Assadi, Farach-Colton, Kuszmaul SODA'23] Lower bound: $\Omega(n \log \log \log \frac{u}{n})$ bits for all $u \ge (1 + \epsilon)n$ ours Tight upper bound: $O(n \log \log \log \frac{u}{n})$ For all reasonable $n \le u < (1 + \epsilon)n$, known facts give tight bounds

ヨト くヨトー

[Assadi, Farach-Colton, and Kuszmaul, SODA'23]: graph of data structures, chromatic number, fractional chromatic number, non-standard graph products, duality of linear programming, intricate probability,

. . .

[Assadi, Farach-Colton, and Kuszmaul, SODA'23]: graph of data structures, chromatic number, fractional chromatic number, non-standard graph products, duality of linear programming, intricate probability,

. . .

[Assadi, Farach-Colton, and Kuszmaul, SODA'23]: graph of data structures, chromatic number, fractional chromatic number, non-standard graph products, duality of linear programming, intricate probability,

. . .

Simpler?

- 20

< 17 b

★ E ► ★ E ►

æ

Cell-probe model?

문어 비원어

æ

Cell-probe model? Not exactly. Query time is not interesting for us

< ∃⇒

One data structure corresponds to a coloring of [1..u] in colors [1..n]

물 🖌 🛪 물 🕨

One data structure corresponds to a coloring of [1..u] in colors [1..n]

(S(n, u) bits)encode at most $2^{S(n, u)}$ colorings

< ≣ ≯

ł

One data structure corresponds to a coloring of [1..u] in colors [1..n]S(n, u) bits encode at most $2^{S(n,u)}$ colorings

One coloring may correctly encode many tuples $\{a_1,...,a_n\} \subset [1..u]$

- E - F

One data structure corresponds to a coloring of [1..u] in colors [1..n]S(n, u) bits encode at most $2^{S(n,u)}$ colorings

One coloring may correctly encode many tuples $\{a_1,...,a_n\} \subset [1..u]$ Example

$${a_1, ..., a_5} = {3, 6, 7, 10, 14}$$

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
color 1, color 2, color 3, color 4, color 5

One data structure corresponds to a coloring of [1..u] in colors [1..n]S(n, u) bits encode at most $2^{S(n,u)}$ colorings

One coloring may correctly encode many tuples $\{a_1,...,a_n\} \subset [1..u]$ Example

$$\{a_1,...,a_5\}=\{3,6,7,10,14\},\{1,2,4,9,12\}$$

3 + 4 = +

One data structure corresponds to a coloring of [1..u] in colors [1..n]S(n, u) bits) encode at most $2^{S(n,u)}$ colorings

One coloring may correctly encode many tuples $\{a_1,...,a_n\} \subset [1..u]$ Example

$$\{a_1,...,a_5\}=\{3,6,7,10,14\},\{1,2,4,9,12\},\{1,6,11,15,16\}$$

글 제 귀 글 제

A coloring is a map $f: [1..u] \rightarrow [1..n]$; suppose that C is a minimal family of colorings such that every tuple $\{a_1, \ldots, a_n\} \subset [1..u]$ is encoded by some $f \in C$, i.e., $f(a_k) = k$ for all $k \in [1..n]$

伺下 イヨト イヨト

A coloring is a map $f: [1..u] \rightarrow [1..n]$; suppose that C is a minimal family of colorings such that every tuple $\{a_1, \ldots, a_n\} \subset [1..u]$ is encoded by some $f \in C$, i.e., $f(a_k) = k$ for all $k \in [1..n]$

Claim

The MMPHF requires $S(n, u) \ge \log |\mathcal{C}|$ bits of space, so we have to prove that $\log |\mathcal{C}| \ge \Omega(n \log \log \log \frac{u}{n})$ for $u \ge (1 + \epsilon)n$

伺下 イヨト イヨト

A coloring is a map $f: [1..u] \rightarrow [1..n]$; suppose that C is a minimal family of colorings such that every tuple $\{a_1, \ldots, a_n\} \subset [1..u]$ is encoded by some $f \in C$, i.e., $f(a_k) = k$ for all $k \in [1..n]$

Claim

The MMPHF requires $S(n, u) \ge \log |\mathcal{C}|$ bits of space, so we have to prove that $\log |\mathcal{C}| \ge \Omega(n \log \log \log \frac{u}{n})$ for $u \ge (1 + \epsilon)n$

Assadi et al. prove the bound for the case $u = 2^{2^{n^3}}$, when $n \log \log \log \frac{u}{n} = \Theta(n \log n)$:

同下 くきと くきとうき

A coloring is a map $f: [1..u] \rightarrow [1..n]$; suppose that C is a minimal family of colorings such that every tuple $\{a_1, \ldots, a_n\} \subset [1..u]$ is encoded by some $f \in C$, i.e., $f(a_k) = k$ for all $k \in [1..n]$

Claim

The MMPHF requires $S(n, u) \ge \log |\mathcal{C}|$ bits of space, so we have to prove that $\log |\mathcal{C}| \ge \Omega(n \log \log \log \frac{u}{n})$ for $u \ge (1 + \epsilon)n$

Assadi et al. prove the bound for the case $u = 2^{2^{n^3}}$, when $n \log \log \log \frac{u}{n} = \Theta(n \log n)$:

- devise a random process generating n-tuples
- ▶ prove that any fixed coloring encodes the generated *n*-tuple with probability $\leq \frac{1}{n^{\Omega(n)}}$
- then there are $\geq n^{\Omega(n)}$ colorings in $\mathcal C$

A coloring is a map $f: [1..u] \rightarrow [1..n]$; suppose that C is a minimal family of colorings such that every tuple $\{a_1, \ldots, a_n\} \subset [1..u]$ is encoded by some $f \in C$, i.e., $f(a_k) = k$ for all $k \in [1..n]$

Claim

The MMPHF requires $S(n, u) \ge \log |\mathcal{C}|$ bits of space, so we have to prove that $\log |\mathcal{C}| \ge \Omega(n \log \log \log \frac{u}{n})$ for $u \ge (1 + \epsilon)n$

Assadi et al. prove the bound for the case $u = 2^{2^{n^3}}$, when $n \log \log \log \frac{u}{n} = \Theta(n \log n)$:

- devise a random process generating n-tuples
- ▶ prove that any fixed coloring encodes the generated *n*-tuple with probability $\leq \frac{1}{n^{\Omega(n)}}$
- then there are $\geq n^{\Omega(n)}$ colorings in $\mathcal C$
- ► then $\log |\mathcal{C}| \ge \log(n^{\Omega(n)}) = \Omega(n \log n)$

周 とうきょう きょうしき

Image: A matrix

★ 문 ► ★ 문 ►

æ

• Suppose
$$u \ge 2^{2^{n^3}}$$

• Suppose $u \ge 2^{2^{n^3}}$

The process generating *n*-tuples from $[1..2^{2^{n^3}}] \subseteq [1..u]$ gives the probability at most $1/n^{\Omega(n)}$, implying the lower bound $\Omega(n \log n)$, which is $\Omega(n \log \log \log \frac{u}{n})$ when $2^{2^{n^3}} \le u \le 2^{2^{p \circ \log(n)}}$

• Suppose $u \ge 2^{2^{n^3}}$

The process generating *n*-tuples from $[1..2^{2^{n^3}}] \subseteq [1..u]$ gives the probability at most $1/n^{\Omega(n)}$, implying the lower bound $\Omega(n \log n)$, which is $\Omega(n \log \log \log \frac{u}{n})$ when $2^{2^{n^3}} \le u \le 2^{2^{\operatorname{poly}(n)}}$

• Suppose
$$(1 + \epsilon)n \le u < 2^{2^{\circ}}n$$

• Suppose $u \ge 2^{2^{n^3}}$

The process generating *n*-tuples from $[1..2^{2^{n^3}}] \subseteq [1..u]$ gives the probability at most $1/n^{\Omega(n)}$, implying the lower bound $\Omega(n \log n)$, which is $\Omega(n \log \log \log \frac{u}{n})$ when $2^{2^{n^3}} \le u \le 2^{2^{p \circ \log(n)}}$

Suppose $(1 + \epsilon)n \le u < 2^{2^8}n$ Since $n \log \log \log \log \frac{u}{n} = \Theta(n)$, the lower bound $\Omega(n)$ follows from the known bound $\Omega(n)$

Suppose $2^{2^8}n \le u < 2^{2^{n^3}}$

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

Suppose
$$2^{2^8} n \le u < 2^{2^{n^3}}$$

Split $[1..u]$ into n/\bar{n} blocks of size $\bar{u} = u/(n/\bar{n})$, where $\bar{n} = \lfloor (\log \log \frac{u}{n})^{1/3} \rfloor$

1	2	3	4	 n/\bar{n}
ū	ū	ū	ū	 ū

Suppose
$$2^{2^8}n \le u < 2^{2^{n^3}}$$

Split [1..*u*] into n/\bar{n} blocks of size $\bar{u} = u/(n/\bar{n})$, where $\bar{n} = \lfloor (\log \log \frac{u}{n})^{1/3} \rfloor$

1	2	3	4		n/\bar{n}
ū	ū	ū	ū	•••	ū

Randomly generate \bar{n} -tuple inside each block by our process, which is possible since $\bar{u} \ge 2^{2^{\bar{n}^3}}$: indeed $\bar{u} \ge u/n = 2^{2^{\log \log \frac{u}{n}}} \ge 2^{2^{\bar{n}^3}}$

Suppose
$$2^{2^8}n \le u < 2^{2^{n^3}}$$

Split [1..*u*] into n/\bar{n} blocks of size $\bar{u} = u/(n/\bar{n})$, where $\bar{n} = \lfloor (\log \log \frac{u}{n})^{1/3} \rfloor$

1	2	3	4		n/\bar{n}
ū	ū	ū	ū	•••	ū

Randomly generate \bar{n} -tuple inside each block by our process, which is possible since $\bar{u} \ge 2^{2^{\bar{n}^3}}$: indeed $\bar{u} \ge u/n = 2^{2^{\log \log \frac{u}{\bar{n}}}} \ge 2^{2^{\bar{n}^3}}$ Fix any coloring of [1..u]: the probability that the random *n*-tuple is encoded by this coloring is $\le (1/\bar{n}^{\Omega(\bar{n})})^{n/\bar{n}} = 1/\bar{n}^{\Omega(n)}$

Suppose
$$2^{2^8} n \le u < 2^{2^{n^3}}$$

Split [1..*u*] into n/\bar{n} blocks of size $\bar{u} = u/(n/\bar{n})$, where $\bar{n} = \lfloor (\log \log \frac{u}{n})^{1/3} \rfloor$

1	2	3	4		n/\bar{n}
ū	ū	ū	ū	•••	ū

Randomly generate \bar{n} -tuple inside each block by our process, which is possible since $\bar{u} \ge 2^{2^{\bar{n}^3}}$: indeed $\bar{u} \ge u/n = 2^{2^{\log \log \frac{u}{n}}} \ge 2^{2^{\bar{n}^3}}$ Fix any coloring of [1..u]: the probability that the random *n*-tuple is encoded by this coloring is $\le (1/\bar{n}^{\Omega(\bar{n})})^{n/\bar{n}} = 1/\bar{n}^{\Omega(n)}$ Then there are $\ge \bar{n}^{\Omega(n)}$ colorings in C

Suppose
$$2^{2^8}n \le u < 2^{2^{n^3}}$$

Split [1..*u*] into n/\bar{n} blocks of size $\bar{u} = u/(n/\bar{n})$, where $\bar{n} = \lfloor (\log \log \frac{u}{n})^{1/3} \rfloor$

1	2	3	4		n/\bar{n}
ū	ū	ū	ū	•••	ū

Randomly generate \bar{n} -tuple inside each block by our process, which is possible since $\bar{u} \ge 2^{2^{\bar{n}^3}}$: indeed $\bar{u} \ge u/n = 2^{2^{\log \log \frac{u}{n}}} \ge 2^{2^{\bar{n}^3}}$ Fix any coloring of [1..u]: the probability that the random *n*-tuple is encoded by this coloring is $\le (1/\bar{n}^{\Omega(\bar{n})})^{n/\bar{n}} = 1/\bar{n}^{\Omega(n)}$ Then there are $\ge \bar{n}^{\Omega(n)}$ colorings in CThen $\log |\mathcal{C}| \ge \log(\bar{n}^{\Omega(n)}) = \Omega(n \log \bar{n}) = \Omega(n \log \log \log \frac{u}{n})$ Omitted: upper and lower bounds for $n \le u < (1 + \epsilon)n$, upper bound $O(n \log \log \log \frac{u}{n})$ for $u \ge (1 + \epsilon)n$, randomized MMPHF, the random process of Assadi et al. for $u = 2^{2^{n^3}}$

3 + 4 = +

Omitted: upper and lower bounds for $n \le u < (1 + \epsilon)n$, upper bound $O(n \log \log \log \frac{u}{n})$ for $u \ge (1 + \epsilon)n$, randomized MMPHF, the random process of Assadi et al. for $u = 2^{2^{n^3}}$

Thank you!

