
Simpli�ed Tight Bounds for
Monotone Minimal Perfect Hashing

Dmitry Kosolobov

Ural Federal University, Ekaterinburg, Russia

D. Kosolobov Simpli�ed Tight Bounds for MMPHF 1 / 11



Content

▶ Monotone minimal perfect hash function

▶ Known upper and lower bounds

▶ Model and counting argument

▶ Let's count

D. Kosolobov Simpli�ed Tight Bounds for MMPHF 2 / 11



Monotone minimal perfect hash function (MMPHF)

Given a1 < · · · < an from [1..u] = {1, 2, ..., u}, compute a data
structure with queries f : [1..u] → [1..n]:

▶ f (x) = k if x = ak for some k ∈ [1..n]

▶ f (x) is arbitrary if x ̸∈ {a1, . . . , an}

Example

u = 16, {a1, ..., a5} = {3, 6, 7, 10, 14}

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

MMPHF colors the segment [1..u]: the color of x is f (x)
color 1, color 2, color 3, color 4, color 5
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Monotone minimal perfect hash function (MMPHF)

Restriction throughout the talk: u ≤ 22
poly(n)

Upper bound: O(n log log log u) bits, O(log u) query time
[Belazzougui, Boldi, Pagh, Vigna SODA'09]

Can this space be lowered?

NO...

Lower bound: Ω(n) bits
[Belazzougui, Boldi, Pagh, Vigna SODA'11]

Lower bound: Ω(n log log log u) bits for all u ≥ n22
√

log log n

[Assadi, Farach-Colton, Kuszmaul SODA'23]
Lower bound: Ω(n log log log u

n ) bits for all u ≥ (1+ ϵ)n
ours

Tight upper bound: O(n log log log u
n )

For all reasonable n ≤ u < (1+ ϵ)n, known facts give tight bounds
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Lower bound of Assadi, Farach-Colton, Kuszmaul

[Assadi, Farach-Colton, and Kuszmaul, SODA'23]:
graph of data structures,
chromatic number,
fractional chromatic number,
non-standard graph products,
duality of linear programming,
intricate probability,
...

Simpler?

D. Kosolobov Simpli�ed Tight Bounds for MMPHF 5 / 11



Lower bound of Assadi, Farach-Colton, Kuszmaul

[Assadi, Farach-Colton, and Kuszmaul, SODA'23]:
graph of data structures,
chromatic number,
fractional chromatic number,
non-standard graph products,
duality of linear programming,
intricate probability,
...

Simpler?

D. Kosolobov Simpli�ed Tight Bounds for MMPHF 5 / 11



Lower bound of Assadi, Farach-Colton, Kuszmaul

[Assadi, Farach-Colton, and Kuszmaul, SODA'23]:
graph of data structures,
chromatic number,
fractional chromatic number,
non-standard graph products,
duality of linear programming,
intricate probability,
...

Simpler?

D. Kosolobov Simpli�ed Tight Bounds for MMPHF 5 / 11



Lower bound of Assadi, Farach-Colton, Kuszmaul

[Assadi, Farach-Colton, and Kuszmaul, SODA'23]:
graph of data structures,
chromatic number,
fractional chromatic number,
non-standard graph products,
duality of linear programming,
intricate probability,
...

Simpler?

D. Kosolobov Simpli�ed Tight Bounds for MMPHF 5 / 11



Model of computation

Cell-probe model? Not exactly. Query time is not interesting for us

S(n, u) bits

Queries take O(1) time
Modelled as a function f : [1..u]× {0, 1}S → [1..n]
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Counting argument

One data structure corresponds to a coloring of [1..u] in colors [1..n]

S(n, u) bits encode at most 2S(n,u) colorings

One coloring may correctly encode many tuples {a1, ..., an} ⊂ [1..u]

Example

{a1, ..., a5} = {3, 6, 7, 10, 14}

, {1, 2, 4, 9, 12}, {1, 6, 11, 15, 16}

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

color 1, color 2, color 3, color 4, color 5
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Counting argument

A coloring is a map f : [1..u] → [1..n]; suppose that C is a minimal
family of colorings such that every tuple {a1, . . . , an} ⊂ [1..u] is
encoded by some f ∈ C, i.e., f (ak) = k for all k ∈ [1..n]

Claim
The MMPHF requires S(n, u) ≥ log |C| bits of space, so we have to
prove that log |C| ≥ Ω(n log log log u

n ) for u ≥ (1+ ϵ)n

Assadi et al. prove the bound for the case u = 22
n3

, when
n log log log u

n = Θ(n log n):

▶ devise a random process generating n-tuples

▶ prove that any �xed coloring encodes the generated n-tuple
with probability ≤ 1

nΩ(n)

▶ then there are ≥nΩ(n) colorings in C
▶ then log |C| ≥ log(nΩ(n)) = Ω(n log n)
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Very small and very large u

▶ Suppose u ≥ 22
n3

The process generating n-tuples from [1..22
n3

] ⊆ [1..u] gives
the probability at most 1/nΩ(n), implying the lower bound

Ω(n log n), which is Ω(n log log log u
n ) when 22

n3 ≤ u ≤ 22
poly(n)

▶ Suppose (1+ ϵ)n ≤ u < 22
8

n
Since n log log log u

n = Θ(n), the lower bound Ω(n) follows
from the known bound Ω(n)
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Normal u

Suppose 22
8

n ≤ u < 22
n3

Split [1..u] into n/n̄ blocks of size ū = u/(n/n̄), where
n̄ = ⌊(log log u

n )
1/3⌋

1 2 3 4 . . . n/n̄

ū ū ū ū . . . ū

Randomly generate n̄-tuple inside each block by our process, which

is possible since ū ≥ 22
n̄3

: indeed ū ≥ u/n = 22
log log u

n ≥ 22
n̄3

Fix any coloring of [1..u]: the probability that the random n-tuple is
encoded by this coloring is ≤(1/n̄Ω(n̄))n/n̄ = 1/n̄Ω(n)
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n̄ = ⌊(log log u

n )
1/3⌋

1 2 3 4 . . . n/n̄
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Randomly generate n̄-tuple inside each block by our process, which

is possible since ū ≥ 22
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Omitted: upper and lower bounds for n ≤ u < (1+ ϵ)n, upper
bound O(n log log log u

n ) for u ≥ (1+ ϵ)n, randomized MMPHF,

the random process of Assadi et al. for u = 22
n3

Thank you!
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