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n A Classic problem: Longest Common Subsequence (m-LCS)
l The problem of finding one of the longest (non-contiguous) subsequences 

common to all M input strings (LCS).
l One of the most fundamental problems in computer science and 

bioinformatics.
l It has been studied for over 50 years in theory and applications. 
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Longest Common Subsequence (LCS) 

ABADD, ABAEE, ABBDD, 

ε, A,B,C,D,E

AA, AB, AC, AD, AE, BA, ..., CD, CE, DD, EE, 

ABA, ABB, ABC, ABD, ..., CEE, 

ABAD, ABAE, ABBD, . . . , BCEE, 

ABBEE, ABCDD, ABCEE

Six LCSs of S 
with length 

r=5

Common 
subsequences

X = ABABCDDEE

Y = ABCBAEEDD

The set S of 
m=2 input strings

Shida, Punzi, Kobayashi, Uno, and Arimura, 2024

A longest common subsequence (LCS) of a set S of input 
strings is a (non-contiguous) subsequence common to all of m 
inputs strings.



n A Classic problem: Longest Common Subsequence (m-LCS)
l The problem of finding one of the longest (non-contiguous) subsequences 

common to all M input strings (LCS).
l One of the most fundamental problems in computer science and 

bioinformatics.
l It has been studied for over 50 years in theory and applications. 

n Computational complexity of m-LCS:
l Polynomial-time solvable if M is a constant (Irving & Fraser, CPM’92), 

while it is NP-hard if M is an input. 
l W[t]-hard if M is a parameter, and W[2]-hard if L is a parameter 

(Bodlaender, Downey, Fellows, & Wareham, TCS, 1995).
l FPT by other parameterization (Bulteau, Jones, Niedermeier+, CPM’22)

n Our goal: We introduce the diversity maximization problem for 
LCSs, and study its computational complexity (approximability & 
parameterized complexity)
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n In combinatorial optimization, much effort
has been done for finding a single best solution.
l Examples: Drag discovery, route planning in delivery 

networks, factory automation, etc.

n However, there has been growing interest 
in finding multiple diverse solutions 
in optimization problems

n Reasons: 
l The specification may not be perfect
l There can be too many optimal solutions (algorithm-dependent)
l Human experts may want to intervene ("Human-in-the-Loop”)

n Diversity maximization problem attracts much attension

Motivations: Finding Multiple Diverse Solutions
CPM2024, Fukuoka
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n There has been a variety of methods studied in the past:

l Random generation - Generate solutions randomly.
l Enumeration - Generate solutions exhaustively.
l Top-K search - Generate in decreasing order of objectives

n However, any of these methods are not satisfactory from the 
view point of (i) the size of a solution set and (ii) the explicit 
guarantee of the diversity

n Our goal: We study the computational complexity of diversity 
maximization problem for LCSs  

Motivations: Finding Multiple Diverse Solutions
CPM2024, Fukuoka
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To find diverse solutions



Given a set S of m input strings, find a subset X of K longest 
common subsequence among all of N solutions of the m-LCS 
problem that maximizes a specified diversity measure Dd(X).

Our problem: Diversity Maximization

Shida, Punzi, Kobayashi, Uno, and Arimura, 2024
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A B C D

A B C E

A C B D

A C B E

B C B D

B C B E

The universe Sol of all solutions of 
m-LCS problem (all LCSs of S)

Select 

Exponentially 
many LCSs 

A B C E

A C B D

B C B D

DECBCA

DEDCBCA

Input: A set S of 
m input strings
(constant m) 

Output: a “diverse” 
subset X of K longest 
common subsequence

Defines

K selected 
solutions

N LCSs

Mininmum length L

Diversity
Dd(X).



Def. Distance between strings
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Def. The Hamming distance 𝑑!"(𝑋, 𝑌) between two strings X and Y of 
the same length n is the total number of positions at which the 
strings disagree (differ). 

𝑑!"(𝑋, 𝑌) = ∑
#$%

&
𝟙{𝑋[𝑖] ≠ 𝑌[𝑖]}

𝑑!"(𝑋, 𝑌) = 2
1 2 3 4 5

X A B A D D
Y A B C D E



Def. Diversity Maximization
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Def. Diversity measures for K-solution sets
𝑋 = 𝑥#, … , 𝑥$ ⊆ 𝑆𝑜𝑙.
• Sum-Diversity 𝐷%&'( 𝑋 : the sum of the pairwise 

distance over all pairs in X. 

𝐷%&'( 𝑋 ≔0
)*+

𝑑 𝑥), 𝑥+ ,

• Min-Diversity 𝐷%(,- 𝑋 : the minimum of the 
pairwise distance over all pairs in X

𝐷%(,- 𝑋 ≔0
)*+

𝑑 𝑥), 𝑥+

A set 𝑆𝑜𝑙 of optimal 
solutions

K solusions

Less diverse

K = 3



Def. Diversity Maximization
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𝐷*+,- 𝑋 ≔ ∑#./ 𝑑 𝑥# , 𝑥/ Sum-Diversity

𝐷*-01 𝑋 ≔ ∑#./ 𝑑 𝑥# , 𝑥/ Min-Diversity

Sum-Diversity Maximization Problem 
(Max-Sum Divese(LCS))
Given: A set of solutions 𝑆𝑜𝑙, distance 
function 𝑑: 𝑆𝑜𝑙2 → ℝ3 integers 𝐾 ≥ 1, Δ ≥ 0
Task: Find a subset 𝑋 = {𝑥%, … , 𝑥4} ⊆ 𝑆𝑜𝑙
of K solutions such that 
(1) |𝑋| ≤ 𝐾, and (2) 𝐷*+,- 𝑋 ≥ Δ (𝐷*-01 𝑋 ≥ Δ). 

A set 𝑆𝑜𝑙 of optimal 
solutions

More diverse

Less diverse

K = 3

Similarly, we can define the Max-Min variant (Max-Min(LCS))



Given a set S of m input strings, find a subset X of K longest 
common subsequence among all of N solutions of the m-LCS 
problem that maximizes the specified diversity measure Dd(X).

Our problem: Diversity Maximization
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m-LCS problem (all LCSs of S)
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In 1970s, early days: K-dispersion problem
l Selecting a diverse set of K points among N points in 

a metric space
l O(𝑁! 𝑡"#$%) time ： try all K combinations among N 

In 2020s: “Diverse-X program” 
n proposed by Michael R. Fellows (Dagstuhl seminar, 2019)

n Examples of X = MSTs, Matchings, Shortest paths, etc.
l Typically, there are exponentially many solutions. 

n NP-hard in most case. Sometimes, FPT or Approximable

Our goal: We study the computational complexity of 
diversity maximization problem in strings, especially LCSs  

Related Work
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Baste, Fellows+, Dagstuhl seminar 18421 “Algorithmic enumeration”, 2019. Also in Artificial Intelligence, 303:103644, 2022.

Michael R. Fellows
U. Bergen, Norway 

Let’s study the complexity of finding diverse solutions 
in various discrete optimization problems X!



Summary: Complexity of Max. Diverse LCSs
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When K is bounded When K is input 

Proof: Color coding

Parameterized 
by K and r

FPT

Parameterized 
by K

W[1]-hard
Proof: FPT-reduction 

from p-CLIQUE

NP-hard, but
admits PTAS (Min-Sum only)

Approximable within any constant error
Proof: Local search (Cevallos+ 2019)

+ DP + Negative type metric

Polynomial time 
computable

Proof: Dynamic 
programming

Notes: All results below except PTAS hold for the Min-Sum(LCS) & MinSum(StringSet)
Assumption: the number m of input strings is always constant, throughout. 

K : #solutions to select, r : max. length of LCS
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When K is bounded When K is input 

Polynomial time 
computable

Proof: Dynamic 
programming

Notes: All results below except PTAS hold for the Min-Sum(LCS) & MinSum(StringSet)
Assumption: the number m of input strings is always constant, throughout. 

K : #solutions to select, r : max. length of LCS



Result 1: When the #solutions K is bounded 
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n Corollary: When K is a constant, Max-Sum(LCS) is solvable in 
polynomial time.

n The same result holds for Max-Min.

p Theorem 6 (Max-Sum(StrSet) ):
When K is a constant, for any set L of strings of equal length, and 
given a Σ-labeled acyclic directed graph (Σ-DAG) representing it, 
Max-Sum(StrSet) can be solved in polynomial time.

Main result of Sec.3 (upperbound) Assumption: the number of input strings 
m≥2 is a constant, throughout

Our approach: First show a more general result (Thm 6), solve it using 
dynamic programming on a DAG, and then apply it to the Corollary.



X1 = ABABCDDEE
X2 = ABCBAEEDD

Input strings (m=2) S-DAG

Result 1: When the #solutions K is bounded 

Shida, Punzi, Kobayashi, Uno, and Arimura, 2024

CPM2024, Fukuoka

Original problem to consider: 
(1) Max-Sum(LCS): the Max-Sum diverse LCSs problem

l Observation (folklore): The set of all (exponentially many) LCSs can 
be stored in a polynomial-sized DAG G (called a S-DAG)．

Hence, we consider a more general problem instead: (2) Max-Sum(StrSet): 
the Max-Sum diverse String Set problem for S-DAGs of equi-length strings

A diverse subset X 
of K LCSs

ECBA

DBCA

DBCB

(1) Max-Sum(LCS) 

Select 

(2) Max-Sum(StrSet) 
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(a) An input �-DAG G1 for LCS(X1, Y1) (b) Example run of Algorithm 1 on G1

Figure 1 (a) An input �-DAG G1 over � = {A, B, C, D, E} for the set of all longest common
subsequences of two strings X1 = ABABCDDEE and Y1 = ABCBAEEDD in Table 1 and (b) an
example run of Algorithm 1 based on dynamic programming with K = 3 on an input G1.

set S can contain exponentially many LCSs compared to the total length ||S|| of its strings,184

we can readily see the next lemma.185

I Lemma 2.1 (�-DAG for LCSs). For any constant m > 1 and any set S = {S1, . . . , Sm} ™ �ú186

of m strings, there exists a �-DAG G of polynomial size in ¸ := maxlen(S) such that187

L(G) = LCS(S), and G can be computed in polynomial time in ¸.188

Proof. By Irving and Fraser’s algorithm [30], we can construct a m-dimensional grid graph N189

in O(¸m) time and space, where (i) source and sink: s = (0, . . . , 0) and t = (|S1|, . . . , |Sm|), re-190

spectively. (ii) edge labels: symbols from �fi{Á}. (iii) number of edges: size(N) =
rm

i=1
|Si| 6191

O(¸m). (iv) path property: all of (s, t)-paths spell out LCS(S). Then, applying the Á-removal192

algorithm (see, e.g., Hopcroft and Ullman [29]) yields a �-DAG G in O(|�| · size(N)) time193

and space, where G has O(|�| · size(N)) = O(|�|¸m) edges. This completes the proof. J194

I Remark 2.3. As a direct consequence of Lemma 2.1, we observe that if Max-Min195

(resp. Max-Sum) Diverse String Set can be solved in f(M, K, r, �) time and g(M, K, r, �)196

space, then Max-Min (resp. Max-Sum) Diverse LCSs on S ™ �r can be solvable in t =197

O(|�| · ¸m + f(¸m, K, r, �)) time and s = O(¸m + g(¸m, K, r, ”)) space, where ¸ = maxlen(S).198

From Remark 2.3, for any constant m > 2, there exist a polynomial time reduction from199

Max-Min (resp. Max-Sum) Diverse LCSs for m strings to Max-Min (resp. Max-Sum)200

Diverse String Set on �-DAGs, where the distance measure is Hamming distance.201

2.3 Computational complexity202

A problem with parameter Ÿ is said to be fixed-parameter tractable (FPT) if there is an203

algorithm that solves it, whose running time on an instance x is f(Ÿ(x)) · |x|c for some204

computable function f(Ÿ) and constant c > 0. A many-one reduction „ is called an205

fpt-reduction if it can be computed in FPT and the transformed parameter Ÿ(„(x)) is upper-206

bounded by a computable function of Ÿ(x). For notions not defined here, we refer to Ausiello207

et al. [3] for approximability and to Flum and Grohe [21] for parameterized complexity.208

3 Exact Algorithms for Bounded Number of Diverse Strings209

In this section, we show that both of Max-Min and Max-Sum versions of Diverse String210

Set problems can be solved by dynamic programming in polynomial time and space in the211

size an input �-DAG and integers r and � for any constant K. The corresponding results212

for Diverse LCSs problems will immediately follow from Remark 2.3.213

Result 1: When the #solutions K is bounded 

Shida, Punzi, Kobayashi, Uno, and Arimura, 2024

CPM2024, Fukuoka

Polynomial-time Algorithm: Performs dynamic programming over all 
K-tuples of vertices of G to collect the set of (KxK)-weight matrices for 
all combinations of K paths that maximize the diversity measure.

Details: 
p A combination of K paths in G reachable to each K-tuple of vertices uniquely determines a set of K 

prefixes of solution strings, and thus, the associated (KxK)-weight matrice M = (Wij), 
l where the weight Wij is defined by the pairwise Hamming distances d(Pi, Pj) between string labels of two 

paths Pi and Pj).

p To each K-tuple of vertices, maintain the list of all possible weight matrices 
Observation: There are at most (D+1)KxK (polynomially many) distinct weight matrices for constant K 
and D.

X1 = ABABCDDEE
X2 = ABCBAEEDD

Input strings (m=2)

a list of (XxK)-
weight matrices 



Summary: Complexity of Max. Diverse LCSs
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When K is bounded When K is input 
NP-hard, but

admits PTAS (Min-Sum only)
Approximable within any constant error

Proof: Local search (Cevallos+ 2019)
+ DP + Negative type metric

Notes: All results below except PTAS hold for the Min-Sum(LCS) & MinSum(StringSet)
Assumption: the number m of input strings is always constant, throughout. 

K : #solutions to select, r : max. length of LCS



n Theorem 3 (Hardness): When K is an input, the Max-Sum maximum 
diversity LCSs problem is 
l NP-hard. (Even if # of input strings is a constant m=2). 
l W[1]-hard if K is a parameter. 

n The same result holds for the Max-Min variant.

Result 2: When #solutions K is unbounded

Shida, Punzi, Kobayashi, Uno, and Arimura, 2024

CPM2024, Fukuoka

p Lemma 1: When K is an input, Max-Sum(StringSet) is NP-hard, and 
W[1]-hard if K is a parameter. (Proof: reduction from p-clique)

p Lemma 2: Max-Sum(StringSet) is FPT-reducible to Max-Sum(LCS)

Approach: We show the NP-hardness of a more basic "string set diversity problem" and reduce 
it to the original problem.

The next lemma is a key.
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the unique locus (the end point of the string label of a path) in a trie T if it is represented627

by T . Thus, Algorithm 4 correctly works. For the time complexity, by construction, it is628

not hard to see that Algorithm 4 runs on an input DAG G and a color set C with |C| = k629

in the input-output sensitive manner using O(size(T )deg(G)) = O(kr · size(G)) time and630

O(size(T ) + size(G)) space. J631

D Proofs for Section 6 (Hardness results)632

Sec. 6.1 (Hardness of Diverse String Set for Unbounded K)633

I Theorem 6.1 (NP-hardness for unbounded K). When K is part of an input, Max-Min634

and Max-Sum Diverse String Set on �-graphs for r-strings are NP-hard even for any635

constant r > 3.636

Proof. We reduce an NP-hard problem 3DM [GJ79] to Max-Min Diverse String Set637

by a trivial reduction. Recall that given an instance consists of sets A = B = C = [h] for638

some n > 1 and a set family F ™ [n]3, and 3DM asks if there exists some subset M ™ F639

that is a matching, that is, any two vectors X, Y œ M have no position i œ [3] at which640

the corresponding symbols agree, i.e., X[i] = Y [i]. Then, we construct an instance of641

Max-Min Diverse String Set with r = 3 with an alphabet � = A fi B fi C, a string set642

L = F ™ �3, integers K = n and � = r = 3. Obviously, this transformation is polynomial643

time computable. Then, it is not hard to see that for any M ™ F , M is a matching if and644

only if Dmin

dH
(M) > � holds. On the other hand, for Max-Min Diverse String Set, if645

we let �Õ =
!K

2

"
then for any M ™ F , M is a matching if and only if Dsum

dH
(M) > �Õ holds.646

Combining the above arguments, the theorem is proved. J647

Sec. 6.2 (Hardness of Diverse LCSs for Unbounded K)648

I Theorem 6.3. Under Hamming distance, Max-Min (resp. Max-Sum) Diverse String649

Set for m > 2 strings parameterized with K is fpt-reducible to Max-Min (resp. Max-Sum)650

Diverse LCSs for two string (m = 2) parameterized with K, where m is part of an input.651

Moreover, the reduction is also a polynomial time reduction from Max-Min (resp. Max-Sum)652

Diverse String Set to Max-Min (resp. Max-Sum) Diverse LCSs.653

T4 A4 A4 X4 B4

T3 A3 A3 X3 B3 B3

T2 A2 A2 X2 B2 B2

1 2 3 4 5 6 7 8 9 10 11

T1 A1 X1 B1 B1
W1

W2

W3

W4

P1 Q1X1

P4 Q4

P3 Q3

P2 Q2

Figure 4 Construction of
the set T of s r-strings

From now on, we show the proof of Theorem 6.3. Let654

L = {X1, . . . , Xs} ™ �r and K be an instance of Max-655

Sin Diverse String Set, where r > 1, s > 2. We let656

� = � fi { ai,j , bi,j | i, j œ [s] } be a new alphabet. We define657

the set {P1, . . . , Ps, Q1, . . . , Qs} of 2s strings of length s over �658

such that659

Pi := ai1 . . . ais, Qi := bi1 . . . bis, ’i œ [s]· (4)660

For all i œ [s], |Xi| = r and |Pi| = |Qi| = s hold. We let661

T = {T1, . . . , Ts} be the set of s strings of length r + 2s over � such that662

Ti := PiXiQi, ’i œ [s]· (5)663

Now, we construct two strings S1 and S2 over � with intention that LCS(S1, S2) = T . For664

all i œ [s], we define three nonempty substrings Ai, Wi, Bi œ �+ of Ti such that Ai ·Wi ·Bi = Ti665

as follows (see Fig. 4). For all i œ [s],666
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Now, we construct two strings S1 and S2 over � with intention that LCS(S1, S2) = T . For664

all i œ [s], we define three nonempty substrings Ai, Wi, Bi œ �+ of Ti such that Ai ·Wi ·Bi = Ti665

as follows (see Fig. 4). For all i œ [s],666

(1) Input to the string set 
diversity problem: A set of 
N strings

XX:18 Finding Diverse Longest Common Subsequences
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Figure 5 An example of two input strings (left) and alignment of four longest common subsequences
constructed in the fpt-reduction from Max-Min Diverse String Set to Max-Min Diverse
LCS for two string in the proof for Theorem 6.3. In the figure, a group of red parallelograms
connecting segments S1 and S2 indicate a matching M for a longest common subsequence, while
blue parallelograms indicate prohibited matchings crossing M .

Ai is the prefix of Pi of length s ≠ i + 1 and667

Bi is the su�x of Qi of length i, that is, Ai := Pi[1··s ≠ i + 1] and Bi := Qi[s ≠ i··s].668

Wi is the string Wi := Ai · Xi · Bi, where Ai is the su�x of Pi of length i ≠ 1 and Bi is669

the prefix of Qi of length s ≠ i.670

By construction, we see that |Ai| + |Ai| = |Bi| + |Bi| = s for all i œ [s]. This implies that671

Pi = Ai · Ai and Qi = Bi · Bi. Since Ti = Pi · Xi · Qi = Ai · Ai · Xi · Bi · Bi = Ai · Wi · Bi, we672

have Ti = Ai · Wi · Bi as intended.673

Assuming the above definitions, we define two input strings S1 and S2 as follows:674

S1 := (A1 · · · As) · (W1 · · · Ws) · (B1 · · · Bs) =
rs

i=1
Ai ·

rs
i=1

Wi ·
rs

i=1
Bi,675

S2 := (As · Ws · Bs) · · · (A1 · W1 · B1) =
r

1

i=s(Ai · Wi · Bi)· (6)676

For example, Fig. 5 illustrates construction of S1 and S2 for s = 4. Then, we can associate677

to two input strings S1 and S2 a bipartite graph B = (V1 fi V2, E).678

I Definition D.1. B(S1, S2) = (V1 fi V2, E) is the bipartite graph, where the vertex set679

is unions of the sets V1 and V2 of positions in S1 and S2, respectively, and the edge set680

E ™ V1 ◊ V2 is defined as for any pair of positions (i1, i2) œ V1 ◊ V2, (i1, i2) œ E if and only681

if they are labeled with the same symbol, namely, S1[i1] = S2[i2]. Each pair (i1, i2) œ E is682

called a match between S1 and S2.683

Any subset M ™ E is called an non-crossing matching in B(S1, S2) if there exists no pair684

of distinct edges (i1, i2), (j1, j2) œ M such that (i) they share an end in common, namely,685

i1 = j1 or i2 = j2 (matching), and (ii) they cross each other, namely, (i1 < j1) and (i2 < j2)686

(non-crossing). By definition, if M is an non-crossing matching with |M | = ¸, we can order687

the edges of M in the increasing order as M = {(i1, j1), . . . , (i¸, j¸)} with i1 < · · · < i¸ and688

j1 < · · · < j¸. Then, we observe that the string S1(M) := S1[i1] · · · S1[i¸] œ �¸ (equivalently,689

S2(M) := S2[j1] · · · S2[j¸]) forms the common subsequence associated to M .690

I Lemma D.1. For any M ™ V1 ◊ V2, M is a (cardinality-) maximum non-crossing691

matching in B(S1, S2) if and only if the associated string S1(M) = S2(M) is a longest692

common subsequence of S1 and S2.693

Consider three groups A, B, and W of all segments of the forms Ai’s, Bi’s, and Wi’s,694

respectively. We remark that for any group G, any segment Gi in G has the unique occurrences695

Occ1(Gi) = [p··p + |G| ≠ 1] in S1 and Occ2(Gi) = [q··q + |G| ≠ 1] in S2, respectively, for its696

starting positions p in S1 and q in S2. For any segment G, we say that a match e = (i1, i2)697

connects the occurrences of G in both S1 and S2 if i1 œ Occ1(G) and i2 œ Occ2(G), or698

equivalently, e œ Occ1(G) ◊ Occ2(G). Now, we show the next lemma.699
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Summary: Complexity of Max. Diverse LCSs
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When K is bounded When K is input 
NP-hard, but

admits PTAS (Min-Sum only)
Approximable within any constant error

Proof: Local search (Cevallos+ 2019)
+ DP + Negative type metric

Notes: All results below except PTAS hold for the Min-Sum(LCS) & MinSum(StringSet)
Assumption: the number m of input strings is always constant, throughout. 

K : #solutions to select, r : max. length of LCS



n Theorem 13: When K is an input, the Max-Sum 
diversity problem for LCSs has a PTAS. 
(i.e., for any constant ε>0, it is (1- ε)-approximable in 
polynomial time). 

n Note: The same result does not hold for the Max-Min variant.

Result 3: When #solutions K is unbounded: 
Approximability

Shida, Punzi, Kobayashi, Uno, and Arimura, 2024

CPM2024, Fukuoka

A set 𝑆𝑜𝑙 of 
solutions

Select 
K = 3

solutions
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Theorem 13 follows from Theorem 10, Lemma 11, and Lemma 12 below.

Proof of Theorem 13 (PTAS for unbounded K)

Shida, Punzi, Kobayashi, Uno, and Arimura, 2024

CPM2024, Fukuoka

p Theorem 10 (Cevallos, Eisenbrand, Zenklusen et al., 2019):
When K is an input, the Max-Sum version of the maximum diversity 
problem for a point set has a PTAS if the condition (1) and (2) hold:
l The distance function satisfies the "negative type inequality” (NEG).
l The "farthest point problem" is polynomial time solvable.

l Lemma 11: The Hamming distance between strings is a quasi-metric 
that satisfies the “negative type inequality”.
(Proof: Hamming distance on strings over S with length L can be embedded into 
L1-metric over bitvectors of length｜Σ｜ A 𝐿. Since (i) L1-metric satisfies NEG, and 
(ii) NEG is closed under positive linear combinations (i.e., a cone), Lemma follows. )

Alfonso Cevallos, Friedrich Eisenbrand, and Rico Zenklusen. ”An improved analysis of local search for max-sum 
diversification,” Mathematics of Operations Research, 44(4):1494–1509, 2019. 

l Lemma 12: The farthest point problem for LCS can be solved in polynomial time. 
(Proof: In the DP-algorithm of Thm.6, fix K-1 strings, and search for the rest one.)

Our case: 
• A point = 

an LCS
• A distance 

function = 
Hamming 
distance



• Use the local search method below

Result 3: When #solutions K is unbounded (PTAS)
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A set 𝑆𝑜𝑙 of solutions

Select 
K = 3

solutions

Local search:
l Initially, select any solution set S 

= {X1, ..., XK}.
l Repeat the following process 

O(K2 log K) times as long as the 
updated diversity D(S−{X})∪{Y}) 
increases:
l Select a solution X from S
l Replace X with a new 

solution Y 
l Return the solution set S.



• Use the local search method below

Result 3: When #solutions K is unbounded (PTAS)

Shida, Punzi, Kobayashi, Uno, and Arimura, 2024

CPM2024, Fukuoka

A set 𝑆𝑜𝑙 of solutions

Select 
K = 3

solutions

Local search:
l Initially, select any solution set S 

= {X1, ..., XK}.
l Repeat the following process 

O(K2 log K) times as long as the 
updated diversity D(S−{X})∪{Y}) 
increases:
l Select a solution X from S
l Replace X with a new 

solution Y 
l Return the solution set S.



• Use the local search method below

Result 3: When #solutions K is unbounded (PTAS)

Shida, Punzi, Kobayashi, Uno, and Arimura, 2024

CPM2024, Fukuoka

A set 𝑆𝑜𝑙 of solutions

Select 
K = 3

solutions

Local search:
l Initially, select any solution set S 

= {X1, ..., XK}.
l Repeat the following process 

O(K2 log K) times as long as the 
updated diversity D(S−{X})∪{Y}) 
increases:
l Select a solution X from S
l Replace X with a new 

solution Y 
l Return the solution set S.



• Use the local search method below

Result 3: When #solutions K is unbounded (PTAS)

Shida, Punzi, Kobayashi, Uno, and Arimura, 2024

CPM2024, Fukuoka

A set 𝑆𝑜𝑙 of solutions

Select 
K = 3

solutions

Local search:
l Initially, select any solution set S 

= {X1, ..., XK}.
l Repeat the following process 

O(K2 log K) times as long as the 
updated diversity D(S−{X})∪{Y}) 
increases:
l Select a solution X from S
l Replace X with a new 

solution Y 
l Return the solution set S.



n Theorem 13: When K is an input, the Max-Sum 
diversity problem for LCSs has a PTAS. 
(i.e., for any constant ε>0, it is (1- ε)-approximable in 
polynomial time). 

n Note: The same result does not hold for the Max-Min variant.
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Summary: Complexity of Max. Diverse LCSs
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When K is bounded When K is input 

Proof: Color coding

Parameterized 
by K and r

FPT

Notes: All results below except PTAS hold for the Min-Sum(LCS) & MinSum(StringSet)
Assumption: the number m of input strings is always constant, throughout. 

K : #solutions to select, r : max. length of LCS

(This part will be 
skipped due to time 
constraint)



Summary: Complexity of Max. Diverse LCSs
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When K is bounded When K is input 

Proof: Color coding

Parameterized 
by K and r

FPT

Parameterized 
by K

W[1]-hard
Proof: FPT-reduction 

from p-CLIQUE

NP-hard, but
admits PTAS (Min-Sum only)

Approximable within any constant error
Proof: Local search (Cevallos+ 2019)

+ DP + Negative type metric

Polynomial time 
computable

Proof: Dynamic 
programming

Notes: All results below except PTAS hold for the Min-Sum(LCS) & MinSum(StringSet)
Assumption: the number m of input strings is always constant, throughout. 

K : #solutions to select, r : max. length of LCS



Summary of Results

Shida, Punzi, Kobayashi, Uno, and Arimura, 2024

CPM2024, Fukuoka

Y. Shida et al. XX:3

Table 2 Summary of results on Diverse String Set and Diverse LCSs problems, where K, r,
and � stand for the number, the length, and the diversity threshold for a subset X of r-strings, and
–: const, –: param, and –: input indicate that – is a constant, a parameter, and part of an input,
respectively. A representation of an input set L is always both of �-DAG and LCS otherwise stated.

Problem Type K: const K: param K: input

Max-Sum
Diverse
String & LCS

Exact Poly-Time
(Theorem 3.2)

W[1]-hard on �-DAG
(Theorem 6.2))

W[1]-hard on LCS
(Corollary 6.2))

NP-hard on �-DAG
if r > 3:const
(Theorem 6.1)
NP-hard on LCS
(Corollary 6.1)

Approx.
or FPT

— FPT if r: param
(Theorem 5.2)

PTAS
(Theorem 4.2)

Max-Min
Diverse
String & LCS

Exact Poly-Time
(Theorem 3.1)

W[1]-hard on �-DAG
(Theorem 6.2)

W[1]-hard on LCS
(Corollary 6.2)

NP-hard on �-DAG
if r > 3:const
(Theorem 6.1)
NP-hard on LCS
(Corollary 6.1)

Approx.
or FPT

— FPT if r: param
(Theorem 5.1)

Open

used for the diversity of solution sets in optimization, they lack theoretical guarantee of119

the diversity [5, 6, 20, 25]. In this direction, Baste, Fellows, Ja�ke, Masarík, de Oliveira120

Oliveira, Philip, and Rosamond [5, 6] pioneered the study of finding diverse solutions in121

combinatorial problems, investigating the parameterized complexity of well-know graph122

problems such as Vertex Cover [6]. Subsequently, Hanaka, Kiyomi, Kobayashi, Kobayashi,123

Kurita, and Otachi [26] explored the fixed-parameter tractability of finding various subgraphs.124

They further proposed a framework for approximating diverse solutions, leading to e�cient125

approximation algorithms for diverse matchings, and diverse minimum cuts [25]. While126

previous work has focused on diverse solutions in graphs and set families, the complexity of127

finding diverse solutions in string problems remains unexplored. Arrighi, Fernau, de Oliveira128

Oliveira, and Wolf [2] conducted one of the first studies in this direction, investigating a129

problem of finding a diverse set of subsequence-minimal synchronizing words.130

DAG-based representation for all longest common subsequences have appeared from131

time to time in the literature. The LCS algorithm by Irving and Fraser [30] for more than132

two strings can be see as DP on a grid DAG for LCSs. Lu and Lin’s parallel algorithm [33] for133

LCS on the CREW PRAM model used a similar grid DAG. Hakata and Imai [24] presented134

a faster algorithm based on a DAG of dominant matches. Conte, Grossi, Punzi, and Uno [12]135

study succinct DAGs of maximal common subsequences of two strings for enumeration.136

The relationship between Hamming distance and other metrics has been explored137

in string and geometric algorithms. Lipsky and Porat [32] presented linear-time reductions138

from String Matching problems under Hamming distance to equivalent problems under139

¸1-metric. Gionis, Indyk, and Motwani [22] used an isometry (a distance preserving mapping)140

from an ¸1-metric to Hamming distance over binary strings with a polynomial increase141

in dimension. Cormode and Muthukrishnan [14] showed an e�cient ¸1-embedding of edit142

distance allowing moves over strings into ¸1-metric with small distortion. Despite these143

advancements, existing techniques haven’t been successfully applied to to our problems.144

bounded K unbounded K

Tractable Intractable

Approximable



n Diversity Maximization problem for LCS and a S-DAG 
l w/ Sum- and Min-diversities (for the first time) 

n Investigated the complexity in various settings cases: 
l Bounded K => Tractable (PTIME)
l Unbounded K => Intractable (NP-hard); Approximable (PTAS) for Max-Sum
l Parameterized by K only => Param. Intractable (W[1]-hard)

n Not surprising results. However, we required to establish: 
l Negative-typeness of String Hamming distance in O(Ls) dimension (seems new)
l Color-coding technique for automata (NFAs or S-DAGs)

Conclusion

32 Shida, Punzi, Kobayashi, Uno, and Arimura

CPM2024, Fukuoka, 25-27 June 2024

Future work
p Approximability of Max-Min(LCS) in the case of unbouned K
p Max-Sum(MCS)/Max-Min(MCS) for MCS (maximal common subsequences) 

under Edit Distance. (Recently, it was independently shown: m-MCSs have a 
DAG representation of poly-size with m=2 [Punzi, Grossi, Uno, ISAAC’23], [Hirota & 
Sakai, arXiv’23], while it is open for any m>= 3.)

K: #solutions, 
r: max. length 
of input strings



Thank you!
And Question?

Slide pdf will be found at “Code section” of this paper’s arXIv site: https://arxiv.org/abs/2405.00131
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