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B A Classic problem: Longest Common Subsequence (m-LCS)

® The problem of finding one of the longest (non-contiguous) subsequences
common to all M input strings (LCS).

® One of the most fundamental problems in computer science and
bioinformatics.

® [t has been studied for over 50 years in theory and applications. I
"~/

0
)

Shida, Punzi, Kobayashi, Uno, and Arimura, 2024



A longest common subsequence (LCS) of a set S of input
strings is a (non-contiguous) subsequence common to all of m

inputs strings.

The set S of
m=2 input strings

&, A,B,C,D,E
AA, AB, AC, AD, AE, BA, ..., CD, CE, DD, E

X = E ABA, ABB, ABC, ABD, ..., CEE,
Y: c E ABAD) ABAE) ABBD) o o 0 g BCEE)

ABADD;, ABAEE, ABBDD,
BEE, ABCDD, ABCEE
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A Classic problem: Longest Common Subsequence (m-LCS)

® The problem of finding one of the longest (non-contiguous) subsequences
common to all M input strings (LCS). /

® One of the most fundamental problems in computer science and
bioinformatics.

® [t has been studied for over 50 years in theory and applications. I

Computational complexity of m-LCS:

® Polynomial-time solvable if M is a constant (lrving & Fraser, CPM’q2),
while it is NP-hard if M is an input.

® W[t]-hard if M is a parameter, and W[2]-hard if L is a parameter
(Bodlaender, Downey, Fellows, & Wareham, TCS, 1995).

® FPT by other parameterization (Bulteau, Jones, Niedermeier+, CPM’22)

Our goal: We introduce the diversity maximization problem for

LCSs, and study its computational complexity (approximability &
parameterized complexity)
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&) Motivations: Finding Multiple Diverse Solutions — .".

In combinatorial optimization, much effort
has been done for finding a single best solution.

® Examples: Drag discovery, route planning in delivery
networks, factory automation, etc.

However, there has been growing interest a4
in finding multiple diverse solutions — {9800
in optimization problems

® The specification may not be perfect
® There can be too many optimal solutions (algorithm-dependent)
® Human experts may want to intervene ("Human-in-the-Loop™)

Diversity maximization problem attracts much attension
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&) Motivations: Finding Multiple Diverse Solutions

To find diverse solutions
There has been a variety of methods studied in the past:

® Random generation - Generate solutions randomly.
® Enumeration - Generate solutions exhaustively.
® Top-K search - Generate in decreasing order of objectives

However, any of these methods are not satisfactory from the

view point of (i) the size of a solution set and (ii) the explicit
guarantee of the diversity

Our goal: We study the computational complexity of diversity
maximization problem for LCSs

Shida, Punzi, Kobayashi, Uno, and Arimura,
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&) Our problem: Diversity Maximization ot

Given a set S of m input strings, find a subset X of K longest
common subsequence among all of N solutions of the m-LCS
problem that maximizes a specified diversity measure D (X).

The universe Sol of all solutions of Qutput: a “diverse”
m-LCS problem (all LCSs of S)  subset X of K longest

common subsequence

Selecf7IA 51 o EI

AlC|B|D|

Input: A set S of
m input strings
(constant m)

( )
A|lC|B|JC|E]|D

OO0
T

AlclelclbplelD

\_ v
\ J

o
O
o
O

\

|
Mininmum length L ected
9 Exponentially clelE solutions
many LCSs / Shida, Punzi, Kobayashi, Uno, and Arimura, 2024
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Ge)) Def. Distance between strings

Def. The Hamming distance dyp(X,Y) between two strings X and Y of
the same length n is the total number of positions at which the
strings disagree (differ).

dup(X,Y) = T UX[i] # Y[i]}

—

< X
> |>
w w |~
o |>
O[O |~
m |O for

W

dHD(X,Y) —_ 2
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Def. Diversity Maximization A

) i : A set Sol of optimal
Def. Diversity measures for K-solution sets solutions

X ={xq,..,x¢} € Sol. K=3

* Sum-Diversity D3"™(X) : the sum of the pairwise / K 50’“5"0“5\
distance over all pairs in X. O

Dcslum (X) = z _d(xl-, x]-), i - — 0

1<j
O
O

- Min-Diversity DI (X) : the minimum of the 6
pairwise distance over all pairs in X ] -

O
_ Less diverse
Dcrlmn(X) = z _d(xl-,xj) K /

i<j
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Gu) Def. Diversity Maximization

Sum-Diversity Maximization Problem A set Sol of optimal
(Max-Sum Divese(LCS)) K =3

given: A set of solutions Sol ) distance / Movre diverse\
function d:Sol> - R, integers K > 1,A > 0 |

Task: Find a subset X = {x, ...,xx} € Sol

of K solutions such that -

(1) |X| < K, and (2) D3"™(X) = A (DF"(X) = A). =
Similarly, we can define the Max-Min variant (Max-Min(LCS))

k Less diverse /

D;um (X) — Zi<j d(xl', x]) SMM-DfVeV'Sity
DI™(X) =Y,.;d(x;,x;)  Min-Diversity
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&) Our problem: Diversity Maximization o

Given a set S of m input strings, find a subset X of K longest
common subsequence among all of N solutions of the m-LCS
problem that maximizes the specified diversity measure D (X).

The set Sol of all solutions of  Qutput: a “diverse”
m-LCS problem (all LCSs of S)  subset X of K longest

Input: A set S of

common subsequence
m input strings AlBJC|D S -
(constant W\) I A|B|C|E I Seleci}l AlBICI|E |
r D . :
alcl|slc|e]|D IA C|B DI versity
- A|C|B|D
* £ [ . | d(X)-
A|lC|B|J|C|D|E]|D A|IC|IBI|E
x J
\ J —
Mininmum l'engtlf\ L [slclslD] ected
Exponent‘ Hy CIBI|E solutions
many LCSs / Shida, Punzi, Kobayashi, Uno, and Arimura, 2024
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In 1970s, early days: K-dispersion problem )

® Selecting a diverse set of K points among N points in 0
a metric space o

® O(NX tgist) time : try all K combinations among N

In 2020s: “Diverse-X program’
proposed by Michael R. Fellows (Dagstuhl seminar, 2019)

Let’s study the complexity of finding diverse solutions
in various discrete optimization problems X!
Examples of X = MSTs, Matchings, Shortest paths, etc.
® Typically, there are exponentially many solutions.

v

NP-hard in most case. Sometimes, FPT or Approximable Michael R. Fellows
U. Bergen, Norway

Our goal: We study the computational complexity of
diversity maximization problem in strings, especially LCSs

Baste, Fellows+, Dagstuhl seminar 18421 “Algorithmic enumeration”, 2019. Also in Artificial Intelligence, 303:103644, 2022.
12 Shida, Punzi, Kobayashi, Uno, and Arimura



&) Summary: Complexity of Max. Diverse LLS:
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Notes: All results below except PTAS hold for the Min-Sum(LCS) & MinSum(StringSet)
Assumption: the number m of input strings is always constant, throughout.

When K is bounded
| ]

Polynomial time
computable

Proof: Dynamic
programming

L

-

admits PTAS (Min-Sum only)

Proof: Local search (Cevallos+ 2019)

When K is input
NP-hard, but

Approximable within any constant error

+ DP + Negative type metric

K : #solutions to select, r : max. length of LCS

.

Parameterized ||| Parameterized
by K and v by K
FPT W[1]-hard

Proof: Color coding from p-CLIQUE

Proof: FPT-reduction

=01 ° I = ° v °
Shida, Punzi, Kobayashi, Uno, and Arimura, 2024
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&) Summary: Complexity of Max. Diverse LLSS

Notes: All results below except PTAS hold for the Min-Sum(LCS) & MmSum(StrmgSet)
Assumption: the number m of input strings is always constant, throughout.

When K is bounded When K is input
| ]

Polynomial time
computable

Proof: Dynamic
programming

L

K : #solutions to select, r : max. length of LCS Shida, Punzi, Kobayashi, Uno, and Arimura, 2024




Result 1: When the #solutions K is bounded™ " "%

Main result of Sec.3 (upper bound) Assumption: the number of input strings
m22 is a constant, throughout

Corollary: When K is a constant, Max-Sum(LCS) is solvable in
polynomial time.

The same result holds for Max-Min.

Our approach: First show a more general result (Thm 6), solve it using
dynamic programming on a DAG, and then apply it to the Corollary.

0 Theorem 6 (Max-Sum(StrSet) ):
When K is a constant, for any set L of strings of equal length, and
given a Z-labeled acyclic directed graph (X-DAQG) representing it,
Max-Sum(StrSet) can be solved in polynomial time.

15 Shida, Punzi, Kobayashi, Uno, and Arimura



Original problem to consider:
(1) Max-Sum(LCS): the Max-Sum diverse LCSs problem

A diverse subset X

" 1) Max-Sum(LCS) of k LCSs
_ (e —(/).D
Input strings ( £ 5 A
X, = ABABCDDEE D
X, = ABCBAEEDD ~

o Observation (folklore): The set of all (exponentially many) LCSs can
be stored in a polynomial-sized DAG G (called a =-DAG).

Hence, we consider a more general problem instead: (2) Max-Sum(StrSet):
the Max-Sum diverse String Set problem for 2-DAGs of equi-length strings

Shida, Punzi, Kobayashi, Uno, and Arimura, 2024



Polynomial-time Algorithm: Performs dynamic programming over all
K-tuples of vertices of G to collect the set of (KxK)-weight matrices for

all combinations of K paths that maximize the diversity measure.
a list of (XxK)-

jl> A j‘> ght matvrices 50
‘ “ 0
lnput strings (m=2) :

= ABABCDDEE
Xz = ABCBAEEDD

Cee.—>fpp \ 31

sss Mddb&ix;_\ / \“qr q— ttt (

\ : cde; : : / :
N33

C L bbb
B \‘ \“eee —»PPP/'

~—

Detalils:

o A combination of K paths in G reacl«a%le to each K-tuple of vertices uniquely determines a set of K
prefixes of solution strings, and thus, the associated (KxK)-weight matrice M = (Wj),

o where the weight W is defined by the pairwise Hamming distances d(P;, P;) between string labels of two
paths P; and P;).

— L] L] L] L] L] L] a f'r’.c p‘S

Observation: There are at most (A+1)K(polynomially many) distinct weight matrices for constant K

and A. : : : :
Shida, Punzi, Kobayashi, Uno, and Arimura, 2024
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) Summary: Complexity of Max. Diverse LSS ..

Notes: All results below except PTAS hold for the Min-Sum(LCS) & MinSum(StringSet)
Assumption: the number m of input strings is always constant, throughout.

When K is bounded When K is input
I NP-hard, but
admits PTAS (Min-Sum only)

Approximable within any constant ervor
Proof: Local search (Cevallos+ 2019)

+ DP + Negative type metric

L

K . #SOIMthV\S tO SeleCt, V‘ . W\ax- lengtl" OF LCS Shlda, PMV\ZI., Kobayasl«i, UV\O, and AV'I'W\L(V'G, 2024_
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G Result 2: When #solutions K is unboundéd™ "

Theorem 3 (Hardness): When K is an input, the Max-Sum maximum
diversity LCSs problem is

® NP-hard. (Even if # of input strings is a constant m=2).

® W[1]-hard if K is a parameter.

The same result holds for the Max-Min variant.

Approach: We show the NP-hardness of a more basic "string set diversity problem" and reduce
it to the original problem.

0 Lemma 1: When K is an input, Max-Sum(StringSet) is NP-hard, and
W[1]-hard if K is a parameter. (Proof: veduction from p-clique)

The next lemma is a key.

O Lemma 2: Max-Sum(StringSet) is FPT-reducible to Max-Sum(LCS)

Shida, Punzi, Kobayashi, Uno, and Arimura, 2024




(3) A solution of the 2-LCS problem:

Proof of Lemma 2 Recovered original N strings with paddings

. LAplt to the string set ; ——
Il \diversity problem: A set of ; =
° 1 1 1 1
! strings z .
P Q; —
N [~ 5 | o
W2 — W2
l | [e——Ps Q; —
T3l As A; 3 Bs
" Cs —p " Qi —]
FPT-reduction computation Al m -
ki

(2) Input to the LCS
problem: Two strings S1 and

1 2 3 4 5 6 7 8 9 10 11 2_13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
s [Ca T [ nnio% — 3
= (4) Solution to
“the Max-Sum LCS
°

e 5 6 27 28 293031 32 33 34 35 36 37 38 39 4°d\l‘\ e lty P V‘ObleW\

T T
Shida, Punzi, Kobayashi, Uno, and Arimura, 2024
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) Summary: Complexity of Max. Diverse LSS ..

Notes: All results below except PTAS hold for the Min-Sum(LCS) & MinSum(StringSet)
Assumption: the number m of input strings is always constant, throughout.

When K is bounded When K is input
I NP-hard, but
admits PTAS (Min-Sum only)

Approximable within any constant ervor
Proof: Local search (Cevallos+ 2019)

+ DP + Negative type metric

L

K . #SOIMthV\S tO SeleCt, V‘ . W\ax- lengtl" OF LCS Shlda, PMV\ZI., Kobayasl«i, UV\O, and AV'I'W\L(V'G, 2024_



& Result 3: When #solutions K is unboundégs

— Approx L ————————————————

Theorem 13: When K is an input, the Max-Sum
diversity problem for LCSs has a PTAS.

(i.e., for any constant >0, it is (1- &)-approximable in
polynomial time).

Note: The same result does not hold for the Max-Min variant.

Sum-Diversity: Select
Dg"™ (X) ‘=Z. d(x;, %), K=3
i<j solutions

Shida, Punzi, Kobayashi, Uno, and Arimura, 2024
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Proof of Theorem 13 (PTAS for unbounded K)

Theorem 13 follows from Theorem 10, Lemma 11, and Lemma 12 below.

0 Theorem 10 (Cevallos, Eisenbrand, Zenklusen et al., 201.9): .0“2 ;ﬁf‘:t _
When K is an input, the Max-Sum version of the maximum diversity an LCS
problem for a point set has a PTAS if the condition (1) and (2) hold: . A distance
o The distance function satisfies the "negative type inequality” (NEG). function =
o The "farthest point problem" is polynomial time solvable. Z.“W‘W‘"‘g

istance

o Lemma 11: The Hamming distance between strings is a quasi-metric
that satisfies the “negative type inequality’.

(Proof: Hamming distance on strings over T with length L can be embedded into

L1-metric over bitvectors of length|Z| - L. Since (i) L1-metric satisfies NEG, and
(if) NEG is closed under positive lmear combinations (i.e., a cone), Lemma follows. )

o Lemma 12: The farthest point problem for LCS can be solved in polynomial time.
(Proof: In the DP-algorithm of Thm.6, fix K-1 strings, and search for the rest one.)

Alfonso Cevallos, Friedrich Eisenbrand, and Rico Zenklusen. ”An improved analysis of local search for max-sum
diversification,” Mathematics of Operations Research, 44(4):1494-1509, 20149. Shida, Punzi, Kobayashi, Uno, and Arimura, 2024



5 Result 3: When #solutions K is unbounded ( P‘iwAg)F“k”k“

Use the local search method below

A set Sol of solutions
] Local search:

- o Initially, select any solution set S
= {X1, ..., XK}.

@ — Ej - o Repeat the following process

)

U O(K? log K) times as long as the
updated diversity D(S-{X})u{Y})
= increases:

e Select a solution X from S

elecT @ @/ o Replace X with a new

K = solution Y
squTuons e Return the solution set S.

Shida, Punzi, Kobayashi, Uno, and Arimura, 2024



N
\ Select

Use the local search method below

K=3
solutions

Local search:
o Initially, select any solution set S
= {X1, ..., XK}.

o Repeat the following process
O(K? log K) times as long as the
updated diversity D(S-{X})u{Y})
Increases:

o Select a solution X from S

o Replace X with a new
solution Y

e Return the solution set S.

Shida, Punzi, Kobayashi, Uno, and Arimura, 2024



Use the local search method below

solutions

Local search:
o Initially, select any solution set S
= {X1, ..., XK}.

o Repeat the following process
O(K? log K) times as long as the
updated diversity D(S-{X})u{Y})
Increases:

o Select a solution X from S

o Replace X with a new
solution Y

e Return the solution set S.
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Use the local search method below

solutions

Local search:
o Initially, select any solution set S
= {X1, ..., XK}.

o Repeat the following process
O(K? log K) times as long as the
updated diversity D(S-{X})u{Y})
Increases:

o Select a solution X from S

o Replace X with a new
solution Y

e Return the solution set S.
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& Result 3: When #solutions K is unboundégs

— APProxXtimaoitity

Theorem 13: When K is an input, the Max-Sum
diversity problem for LCSs has a PTAS.

(i.e., for any constant >0, it is (1- &)-approximable in
polynomial time).

Note: The same result does not hold for the Max-Min variant.
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&) Summary: Complexity of Max. Diverse LCSS

Notes: All results below except PTAS hold for the Min-Sum(LCS) & MinSum(StringSet)
Assumption: the number m of input strings is always constant, throughout.

When K is bounded When K is input

| 1
Parameterized
by K and r
F PT (This part will be
skipped due to time
Proof: Color coding constraint)
K : #solutions to select, r : max. length of LCS___

Shida, Punzi, Kobayashi, Uno, and Arimura, 2024



&) Summary: Complexity of Max. Diverse LLS:
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Notes: All results below except PTAS hold for the Min-Sum(LCS) & MinSum(StringSet)
Assumption: the number m of input strings is always constant, throughout.

When K is bounded
| ]

Polynomial time
computable

Proof: Dynamic
programming

L

-

admits PTAS (Min-Sum only)

Proof: Local search (Cevallos+ 2019)

When K is input
NP-hard, but

Approximable within any constant error

+ DP + Negative type metric

K : #solutions to select, r : max. length of LCS

.

Parameterized ||| Parameterized
by K and v by K
FPT W[1]-hard

Proof: Color coding from p-CLIQUE

Proof: FPT-reduction

=01 ° I = ° v °
Shida, Punzi, Kobayashi, Uno, and Arimura, 2024
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Summary of Results

bounded K unbounded K
Problem Type K: const K: param K: input
MAX-SuM Exact Poly-Time W/1]-hard on 3-DAG  NP-hard on X-DAG
DIVERSE (Theorem 3.2) (Theorem 6. 28 if r > 3:const
STRING & LCS T t bl Intrac able (Theorem 6.1)
ractaole W/1]-hard on LCS NP-hard on LCS
(Corollary 6.2)) (Corollary 6.1)
Approx. — FPT if r: param PTASApprox:wxable
or FPT (Theorem 5.2) (Theorem 4.2)
MAx-MIN Exact Poly-Time W/1]-hard on ¥-DAG  NP-hard on X-DAG
DIVERSE (Theorem 3.1) (Theorem 6.2) if » > 3:const
STRING & LCS (Theorem 6.1)
W/1]-hard on LCS NP-hard on LCS
(Corollary 6.2) (Corollary 6.1)
Approx. — NFPT if r: param Open
or FPT (Theorem 5.1) ‘M | '

| ° 3 1 [ N / °
Srida, Purzr, Kovagasnt, Uno, and Armura, 2024
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Conclusion A

Diversity Maximization problem for LCS and a =-DAG
® w/ Sum- and Min-diversities (for the first time)

Investigated the complexity in various settings cases: i f(dd
® Bounded K => Tractable (PTIME) nooE
® Unbounded K => Intractable (NP-hard); Approximable (PTAS) for Max-Sum
® Parameterized by K only => Param. Intractable (W[1]-hard) K: #solutions,

. . i r: max. length
Not surprising results. However, we required to establish: | of input strings

® Negative-typeness of String Hamming distance in O(Lc) dimension (seems new)
® Color-coding technique for automata (NFAs or 2-DAGs)

Future work
O Approximability of Max-Min(LCS) in the case of unbouned K

O Max-Sum(MCS)/Max-Min(MCS) for MCS (maximal common subsequences)

under Edit Distance. (Recently, it was independently shown: m-MCSs have a
DAG representation of poly-size with m=2 [Punzi, Grossi, Uno, ISAAC’23], [Hirota &

32 S akai’ arXiv’ZB], Wh”e it is OP en FOV‘ any m>= 3') Shida, Punzi, Kobayashi, Uno, and Arimura
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