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Subsequences

Given:

A text w with |w | = n

A pattern p with |p| = m

p =

w = z x y x z x y y x

x y z y x

x y z y x

e(1) e(2) e(3) e(4) e(5)

Notation: p ⪯e w with e : [m] → [n] (or just p ⪯ w)

Properties of e:

e(1) < e(2) < · · · < e(m)

w [e(i)] = p[i ]
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Gaps in subsequences

Definition

Given positions i , j ∈ [m], i < j , define

gapw ,e [i , j ] := w [e(i) + 1..e(j)− 1]

as the gap between the embedding of the i-th and j-th character.

Example:

p =

w = z x y x z x y y x

x y z y x

xx z x
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gapw ,e [i , j ] := w [e(i) + 1..e(j)− 1]

as the gap between the embedding of the i-th and j-th character.

Example:

p =

w = z x y z x y y x

x y z y x

x

x z x

gapw ,e [2, 3] = x
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Gaps in subsequences

Definition

Given positions i , j ∈ [m], i < j , define

gapw ,e [i , j ] := w [e(i) + 1..e(j)− 1]
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Example:

p =

w = z x y x z x y y x

x y z y x

x

x z x
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Gaps in subsequences

Definition

Given positions i , j ∈ [m], i < j , define

gapw ,e [i , j ] := w [e(i) + 1..e(j)− 1]

as the gap between the embedding of the i-th and j-th character.

Example:

p =

w = z x y x z x y y x

x y z y x

xx z x

gapw ,e [1, 2] = ε
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Gap-Constraints

Definition

A gap constraint is defined as a triple C = (i , j , L) with i , j ∈ [m], i < j
and L ⊆ Σ∗. An embedding e is said to satisfy the constraint if and only if

gapw ,e [i , j ] ∈ L.

Types of Gap-Constraints:

regular constraint: L ∈ REG, size(C ) = size(A) = O(states(A)|Σ|)
with A being a DFA accepting L

semilinear length constraint: L = {w ∈ Σ∗ | |w | ∈ S} with S a
semilinear set, size(C ) = size(S)
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Semilinear sets

Definition

A subset L ⊆ N is called linear, if it is of the form

L = L(x0; x1, . . . , xm) = {x0 +
∑m

i=1 kixi | k1, . . . , km ∈ N0}

with x0 ∈ N0, x1, . . . , xk ∈ N. A semilinear set is a finite union of linear
sets.

Size of a (semi-)linear set:

A linear set L = L(x0; x1, . . . , xm) has size size(L) = m + 1.

A semilinear set L =
⋃k

i=1 Li with Li linear sets has size

size(L) =
∑k

i=1 size(Li ).
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The Matching Problem (Match)

Input:

A text w with |w | = n

A pattern p with |p| = m

A set of constraints C = {C1, . . . ,Ck}

,
gapsize(C) := maxC∈C(size(C ))

Question: Is p a C-subsequence of w , i.e., is there an embedding
e : [m] → [n] with

p ⪯e w and

e satisfies Cℓ for all ℓ ∈ [k]?

We use MatchREG and MatchSLS to denote the variants of the matching
problem with regular and semilinear length constraints respectively.
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Polynomial solutions for Match with constant |C|

MatchREG: Construct an NFA to solve the problem:

Theorem

MatchREG can be solved in polynomial time for constant |C| and is fixed
parameter tractable for the combined parameter (|p|, gapsize(C)).

MatchSLS: Enumerate all possible partial embeddings of the positions
that have a constraint, then “fill the gaps”:

Theorem

MatchSLS can be solved in polynomial time for constant |C|.
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Hardness of MatchSLS

Definition (k-Clique)

Given a graph G = (V ,E ) with n vertices, decide whether there is a
subset K ⊆ V of k vertices that are pairwise adjacent.

Alternative question: Is the k × k matrix containing only 1’s a principal
submatrix of the adjacency matrix A of G?

Example:

A =



1 1 0 1 0 1
1 1 0 1 1 1
0 0 1 0 1 0
1 1 0 1 0 1
0 1 1 0 1 0
1 1 0 1 0 1

 =⇒ K = {v1, v2, v4, v6} is a 4-Clique
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Hardness of MatchSLS

Pattern p = 01k·k0, Text w = 0a11 . . . ann0.

Anchor: Enforce e(1) = 1 with the constraint
(1, k2 + 2, L(n2)).

Constrain the gap between the anchor and each
element on the diagonal to be a multiple of
n + 1.

Constrain the gap between elements on
subsequent rows and in the same column to be
one smaller than a multiple of n.

Constrain the gap between the first and last
element of each row to be smaller than n − 1.


1 1 0 1 0 1
1 1 0 1 1 1
0 0 1 0 1 0
1 1 0 1 0 1
0 1 1 0 1 0
1 1 0 1 0 1



Theorem

MatchSLS parameterised by |p| is W [1]-hard, even for constant
gapsize(C) and binary alphabet Σ.
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Hardness of MatchREG

Definition (1-in-3-3SAT)

Given a set of variables A = {x1, . . . , xn} and clauses c1, . . . , cm ⊆ A with
|cj | = 3, find a subset B ⊆ A, such that |ci ∩ B| = 1 for every j ∈ [m].

Pattern p = (b#)n(b#)m

Text w = (bb#)n(bbb#)m

First part: decide xi ∈ B for i ∈ [n].

Second part: decide which of the 3 variables from cj is in B for
j ∈ [m] (need some ordering on the variables).

Use constraints to ensure that assignments are consistent.

Theorem

MatchREG is NP-complete, even for binary alphabet Σ and with
gap-constraints that can be represented by DFAs with at most 8 states.
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The Graph Structure of Constraints

p = x y z y x x z y x

1 2 3 4 5 6 7 8 9

Construct partial embeddings by adding the positions one-by-one in
order σ = (v1, . . . , vm).

At each time t, we compute all possible partial embeddings, but we
only care about the the values e(vi ), where i ≤ t and (vi , vj) ∈ E for
some j > t.

When adding e(vt) to the embedding, combine all previously possible
embeddings with all possible values of e(vt), then remove all
embeddings that violate any constraint involving vt .
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The Graph Structure of Constraints

Definition (Vertex separation number)

Given a linear ordering σ = (v1, . . . , vn) of vertices in a graph, the vertex
separation number of σ is the smallest number s such that, for each vertex
vi at most s vertices of v1, . . . , vi−1 have some vj with j ≥ i as neighbour.
The vertex separation number of a graph is the minimum vertex separation
number over all linear orderings of the graph.

Theorem

If the vertex separation number of the constraint graph is bound by k,
MatchREG and MatchSLS can be solved in O(m2nk+1 +m2n2 log log n)
and O(m2nk+1) time respectively.
Moreover, both variants are W[1]-hard (parameterized by the vertex
separation number of the constraint graph).

The second part is witnessed by the k-Clique reduction from earlier.
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The Interval Structure of Constraints

For C = (i , j , L) define interval(C ) = [i , j − 1].

Let C and C ′ be two constraints.

C contains C ′ (or C ′ is contained in C ) if interval(C ′) ⊊ interval(C )

p = x y z y x

C

C ′

C and C ′ intersect if interval(C ) ∩ interval(C ′) is neither of
interval(C ), interval(C ′) or ∅.

p = x y z y x

C C ′

What about Match with pairwise non-intersecting constraints?
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Matching with non-intersecting constraints

p = x y z y x x z y x

We can recursively construct the partial embeddings of p[i ..j ] for each
constraint (i , j , L) bottom-up the tree.

Theorem

If constraints are pairwise non-intersecting, MatchREG and MatchSLS

can be solved in O(nωk + n2k log log n) and O(nωk) time respectively,
where O(nω) is the time needed to multiply two boolean matrices of size
n × n.
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Matching with non-intersecting constraints

Definition (3-OV)

Given three sets A = {a⃗1, . . . , a⃗n},B = {b⃗1, . . . , b⃗n},C = {c⃗1, . . . , c⃗n} of
d-dimensional boolean vectors, are there indices i , j , k ∈ [n], such that
a⃗i · b⃗j · c⃗k = 0⃗?

p =

w = w0 Cw (b⃗n) · · · Cw (b⃗1) w0 § w0 Cw (c⃗1) · · · Cw (c⃗n) w0

Cp(a⃗n) · · · Cp(a⃗i ) · · · Cp(a⃗1) § Cp(a⃗1) · · · Cp(a⃗i ) · · · Cp(a⃗n)

Theorem

Both variants of Match with pairwise non-intersecting constraints
cannot be solved in O(ngkh) time with g + h < 3, unless the Strong
Exponential Time Hypothesis fails.
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Theorem

Both variants of Match with pairwise non-intersecting constraints
cannot be solved in O(ngkh) time with g + h < 3, unless the Strong
Exponential Time Hypothesis fails.
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Thank you for your attention!

Summary:

Problem: Matching subsequences with gap constraints

Two types of constraints: regular and semilinear length constraints

Polynomial solutions for constant amount of constraints

Hardness of the problem parameterized by the length of the pattern,
witnessed by reductions from k-Clique and 1-in-3-3-SAT.

Graph structure of Constraints: Relation between complexity of the
problem and vertex separation number of constraint graph

Interval structure of Constraints: Efficient solution for the case of
non-intersecting constraints, lower bound via fine-grained reduction
from 3-OV.

Do you have any questions?
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