
Subsequences with Generalised Gap Constraints
Upper and Lower Complexity Bounds

Florin Manea 1 Jonas Richardsen 1 Markus L. Schmid 2

1Computer Science Department and CIDAS, Universität Göttingen, Germany
2Humboldt-Universität zu Berlin, Germany

June 27, 2024

Manea, Richardsen, Schmid Subsequences with Generalised Gap Constraints 1 / 16

Subsequences

Given:

A text w with |w | = n

A pattern p with |p| = m

p =

w = z x y x z x y y x

x y z y x

x y z y x

e(1) e(2) e(3) e(4) e(5)

Notation: p ⪯e w with e : [m] → [n] (or just p ⪯ w)

Properties of e:

e(1) < e(2) < · · · < e(m)

w [e(i)] = p[i]

Manea, Richardsen, Schmid Subsequences with Generalised Gap Constraints 2 / 16

Subsequences

Given:

A text w with |w | = n

A pattern p with |p| = m

p =

w = z x y x z x y y x

x y z y x

x y z y x

e(1) e(2) e(3) e(4) e(5)

Notation: p ⪯e w with e : [m] → [n] (or just p ⪯ w)

Properties of e:

e(1) < e(2) < · · · < e(m)

w [e(i)] = p[i]

Manea, Richardsen, Schmid Subsequences with Generalised Gap Constraints 2 / 16

Subsequences

Given:

A text w with |w | = n

A pattern p with |p| = m

p =

w = z x y x z x y y x

x y z y x

x y z y x

e(1) e(2) e(3) e(4) e(5)

Notation: p ⪯e w with e : [m] → [n] (or just p ⪯ w)

Properties of e:

e(1) < e(2) < · · · < e(m)

w [e(i)] = p[i]

Manea, Richardsen, Schmid Subsequences with Generalised Gap Constraints 2 / 16

Subsequences

Given:

A text w with |w | = n

A pattern p with |p| = m

p =

w = z x x y

x y z y x

x y z y x

e(1) e(2) e(3) e(4) e(5)

Notation: p ⪯e w with e : [m] → [n] (or just p ⪯ w)

Properties of e:

e(1) < e(2) < · · · < e(m)

w [e(i)] = p[i]

Manea, Richardsen, Schmid Subsequences with Generalised Gap Constraints 2 / 16

Subsequences

Given:

A text w with |w | = n

A pattern p with |p| = m

p =

w = z x x y

x y z y x

x y z y x

e(1) e(2) e(3) e(4) e(5)

Notation: p ⪯e w with e : [m] → [n] (or just p ⪯ w)

Properties of e:

e(1) < e(2) < · · · < e(m)

w [e(i)] = p[i]

Manea, Richardsen, Schmid Subsequences with Generalised Gap Constraints 2 / 16

Subsequences

Given:

A text w with |w | = n

A pattern p with |p| = m

p =

w = z x x y

x y z y x

x y z y x

e(1) e(2) e(3) e(4) e(5)

Notation: p ⪯e w with e : [m] → [n] (or just p ⪯ w)

Properties of e:

e(1) < e(2) < · · · < e(m)

w [e(i)] = p[i]

Manea, Richardsen, Schmid Subsequences with Generalised Gap Constraints 2 / 16

Subsequences

Given:

A text w with |w | = n

A pattern p with |p| = m

p =

w = z x x y

x y z y x

x y z y x

e(1) e(2) e(3) e(4) e(5)

Notation: p ⪯e w with e : [m] → [n] (or just p ⪯ w)

Properties of e:

e(1) < e(2) < · · · < e(m)

w [e(i)] = p[i]

Manea, Richardsen, Schmid Subsequences with Generalised Gap Constraints 2 / 16

Gaps in subsequences

Definition

Given positions i , j ∈ [m], i < j , define

gapw ,e [i , j] := w [e(i) + 1..e(j)− 1]

as the gap between the embedding of the i-th and j-th character.

Example:

p =

w = z x y x z x y y x

x y z y x

xx z x

Manea, Richardsen, Schmid Subsequences with Generalised Gap Constraints 3 / 16

Gaps in subsequences

Definition

Given positions i , j ∈ [m], i < j , define

gapw ,e [i , j] := w [e(i) + 1..e(j)− 1]

as the gap between the embedding of the i-th and j-th character.

Example:

p =

w = z x y x z x y y x

x y z y x

xx z x

Manea, Richardsen, Schmid Subsequences with Generalised Gap Constraints 3 / 16

Gaps in subsequences

Definition

Given positions i , j ∈ [m], i < j , define

gapw ,e [i , j] := w [e(i) + 1..e(j)− 1]

as the gap between the embedding of the i-th and j-th character.

Example:

p =

w = z x y x z x y y x

x y z y x

xx z x

Manea, Richardsen, Schmid Subsequences with Generalised Gap Constraints 3 / 16

Gaps in subsequences

Definition

Given positions i , j ∈ [m], i < j , define

gapw ,e [i , j] := w [e(i) + 1..e(j)− 1]

as the gap between the embedding of the i-th and j-th character.

Example:

p =

w = z x y z x y y x

x y z y x

x

x z x

gapw ,e [2, 3] = x

Manea, Richardsen, Schmid Subsequences with Generalised Gap Constraints 3 / 16

Gaps in subsequences

Definition

Given positions i , j ∈ [m], i < j , define

gapw ,e [i , j] := w [e(i) + 1..e(j)− 1]

as the gap between the embedding of the i-th and j-th character.

Example:

p =

w = z x y x z x y y x

x y z y x

x

x z x

gapw ,e [2, 4] = xzx

Manea, Richardsen, Schmid Subsequences with Generalised Gap Constraints 3 / 16

Gaps in subsequences

Definition

Given positions i , j ∈ [m], i < j , define

gapw ,e [i , j] := w [e(i) + 1..e(j)− 1]

as the gap between the embedding of the i-th and j-th character.

Example:

p =

w = z x y x z x y y x

x y z y x

xx z x

gapw ,e [1, 2] = ε

Manea, Richardsen, Schmid Subsequences with Generalised Gap Constraints 3 / 16

Gap-Constraints

Definition

A gap constraint is defined as a triple C = (i , j , L) with i , j ∈ [m], i < j
and L ⊆ Σ∗. An embedding e is said to satisfy the constraint if and only if

gapw ,e [i , j] ∈ L.

Types of Gap-Constraints:

regular constraint: L ∈ REG, size(C) = size(A) = O(states(A)|Σ|)
with A being a DFA accepting L

semilinear length constraint: L = {w ∈ Σ∗ | |w | ∈ S} with S a
semilinear set, size(C) = size(S)

Manea, Richardsen, Schmid Subsequences with Generalised Gap Constraints 4 / 16

Gap-Constraints

Definition

A gap constraint is defined as a triple C = (i , j , L) with i , j ∈ [m], i < j
and L ⊆ Σ∗. An embedding e is said to satisfy the constraint if and only if

gapw ,e [i , j] ∈ L.

Types of Gap-Constraints:

regular constraint: L ∈ REG, size(C) = size(A) = O(states(A)|Σ|)
with A being a DFA accepting L

semilinear length constraint: L = {w ∈ Σ∗ | |w | ∈ S} with S a
semilinear set, size(C) = size(S)

Manea, Richardsen, Schmid Subsequences with Generalised Gap Constraints 4 / 16

Gap-Constraints

Definition

A gap constraint is defined as a triple C = (i , j , L) with i , j ∈ [m], i < j
and L ⊆ Σ∗. An embedding e is said to satisfy the constraint if and only if

gapw ,e [i , j] ∈ L.

Types of Gap-Constraints:

regular constraint: L ∈ REG

, size(C) = size(A) = O(states(A)|Σ|)
with A being a DFA accepting L

semilinear length constraint: L = {w ∈ Σ∗ | |w | ∈ S} with S a
semilinear set, size(C) = size(S)

Manea, Richardsen, Schmid Subsequences with Generalised Gap Constraints 4 / 16

Gap-Constraints

Definition

A gap constraint is defined as a triple C = (i , j , L) with i , j ∈ [m], i < j
and L ⊆ Σ∗. An embedding e is said to satisfy the constraint if and only if

gapw ,e [i , j] ∈ L.

Types of Gap-Constraints:

regular constraint: L ∈ REG, size(C) = size(A) = O(states(A)|Σ|)
with A being a DFA accepting L

semilinear length constraint: L = {w ∈ Σ∗ | |w | ∈ S} with S a
semilinear set, size(C) = size(S)

Manea, Richardsen, Schmid Subsequences with Generalised Gap Constraints 4 / 16

Gap-Constraints

Definition

A gap constraint is defined as a triple C = (i , j , L) with i , j ∈ [m], i < j
and L ⊆ Σ∗. An embedding e is said to satisfy the constraint if and only if

gapw ,e [i , j] ∈ L.

Types of Gap-Constraints:

regular constraint: L ∈ REG, size(C) = size(A) = O(states(A)|Σ|)
with A being a DFA accepting L

semilinear length constraint: L = {w ∈ Σ∗ | |w | ∈ S} with S a
semilinear set

, size(C) = size(S)

Manea, Richardsen, Schmid Subsequences with Generalised Gap Constraints 4 / 16

Gap-Constraints

Definition

A gap constraint is defined as a triple C = (i , j , L) with i , j ∈ [m], i < j
and L ⊆ Σ∗. An embedding e is said to satisfy the constraint if and only if

gapw ,e [i , j] ∈ L.

Types of Gap-Constraints:

regular constraint: L ∈ REG, size(C) = size(A) = O(states(A)|Σ|)
with A being a DFA accepting L

semilinear length constraint: L = {w ∈ Σ∗ | |w | ∈ S} with S a
semilinear set, size(C) = size(S)

Manea, Richardsen, Schmid Subsequences with Generalised Gap Constraints 4 / 16

Semilinear sets

Definition

A subset L ⊆ N is called linear, if it is of the form

L = L(x0; x1, . . . , xm) = {x0 +
∑m

i=1 kixi | k1, . . . , km ∈ N0}

with x0 ∈ N0, x1, . . . , xk ∈ N. A semilinear set is a finite union of linear
sets.

Size of a (semi-)linear set:

A linear set L = L(x0; x1, . . . , xm) has size size(L) = m + 1.

A semilinear set L =
⋃k

i=1 Li with Li linear sets has size

size(L) =
∑k

i=1 size(Li).

Manea, Richardsen, Schmid Subsequences with Generalised Gap Constraints 5 / 16

The Matching Problem (Match)

Input:

A text w with |w | = n

A pattern p with |p| = m

A set of constraints C = {C1, . . . ,Ck}

,
gapsize(C) := maxC∈C(size(C))

Question: Is p a C-subsequence of w , i.e., is there an embedding
e : [m] → [n] with

p ⪯e w and

e satisfies Cℓ for all ℓ ∈ [k]?

We use MatchREG and MatchSLS to denote the variants of the matching
problem with regular and semilinear length constraints respectively.

Manea, Richardsen, Schmid Subsequences with Generalised Gap Constraints 6 / 16

The Matching Problem (Match)

Input:

A text w with |w | = n

A pattern p with |p| = m

A set of constraints C = {C1, . . . ,Ck},
gapsize(C) := maxC∈C(size(C))

Question: Is p a C-subsequence of w , i.e., is there an embedding
e : [m] → [n] with

p ⪯e w and

e satisfies Cℓ for all ℓ ∈ [k]?

We use MatchREG and MatchSLS to denote the variants of the matching
problem with regular and semilinear length constraints respectively.

Manea, Richardsen, Schmid Subsequences with Generalised Gap Constraints 6 / 16

The Matching Problem (Match)

Input:

A text w with |w | = n

A pattern p with |p| = m

A set of constraints C = {C1, . . . ,Ck},
gapsize(C) := maxC∈C(size(C))

Question: Is p a C-subsequence of w

, i.e., is there an embedding
e : [m] → [n] with

p ⪯e w and

e satisfies Cℓ for all ℓ ∈ [k]?

We use MatchREG and MatchSLS to denote the variants of the matching
problem with regular and semilinear length constraints respectively.

Manea, Richardsen, Schmid Subsequences with Generalised Gap Constraints 6 / 16

The Matching Problem (Match)

Input:

A text w with |w | = n

A pattern p with |p| = m

A set of constraints C = {C1, . . . ,Ck},
gapsize(C) := maxC∈C(size(C))

Question: Is p a C-subsequence of w , i.e., is there an embedding
e : [m] → [n] with

p ⪯e w and

e satisfies Cℓ for all ℓ ∈ [k]?

We use MatchREG and MatchSLS to denote the variants of the matching
problem with regular and semilinear length constraints respectively.

Manea, Richardsen, Schmid Subsequences with Generalised Gap Constraints 6 / 16

The Matching Problem (Match)

Input:

A text w with |w | = n

A pattern p with |p| = m

A set of constraints C = {C1, . . . ,Ck},
gapsize(C) := maxC∈C(size(C))

Question: Is p a C-subsequence of w , i.e., is there an embedding
e : [m] → [n] with

p ⪯e w and

e satisfies Cℓ for all ℓ ∈ [k]?

We use MatchREG and MatchSLS to denote the variants of the matching
problem with regular and semilinear length constraints respectively.

Manea, Richardsen, Schmid Subsequences with Generalised Gap Constraints 6 / 16

Polynomial solutions for Match with constant |C|

MatchREG: Construct an NFA to solve the problem:

Theorem

MatchREG can be solved in polynomial time for constant |C| and is fixed
parameter tractable for the combined parameter (|p|, gapsize(C)).

MatchSLS: Enumerate all possible partial embeddings of the positions
that have a constraint, then “fill the gaps”:

Theorem

MatchSLS can be solved in polynomial time for constant |C|.

Manea, Richardsen, Schmid Subsequences with Generalised Gap Constraints 7 / 16

Hardness of MatchSLS

Definition (k-Clique)

Given a graph G = (V ,E) with n vertices, decide whether there is a
subset K ⊆ V of k vertices that are pairwise adjacent.

Alternative question: Is the k × k matrix containing only 1’s a principal
submatrix of the adjacency matrix A of G?

Example:

A =

1 1 0 1 0 1
1 1 0 1 1 1
0 0 1 0 1 0
1 1 0 1 0 1
0 1 1 0 1 0
1 1 0 1 0 1

 =⇒ K = {v1, v2, v4, v6} is a 4-Clique

Manea, Richardsen, Schmid Subsequences with Generalised Gap Constraints 8 / 16

Hardness of MatchSLS

Definition (k-Clique)

Given a graph G = (V ,E) with n vertices, decide whether there is a
subset K ⊆ V of k vertices that are pairwise adjacent.

Alternative question: Is the k × k matrix containing only 1’s a principal
submatrix of the adjacency matrix A of G?

Example:

A =

1 1 0 1 0 1
1 1 0 1 1 1
0 0 1 0 1 0
1 1 0 1 0 1
0 1 1 0 1 0
1 1 0 1 0 1

 =⇒ K = {v1, v2, v4, v6} is a 4-Clique

Manea, Richardsen, Schmid Subsequences with Generalised Gap Constraints 8 / 16

Hardness of MatchSLS

Definition (k-Clique)

Given a graph G = (V ,E) with n vertices, decide whether there is a
subset K ⊆ V of k vertices that are pairwise adjacent.

Alternative question: Is the k × k matrix containing only 1’s a principal
submatrix of the adjacency matrix A of G?

Example:

A =

1 1 0 1 0 1
1 1 0 1 1 1
0 0 1 0 1 0
1 1 0 1 0 1
0 1 1 0 1 0
1 1 0 1 0 1

 =⇒ K = {v1, v2, v4, v6} is a 4-Clique

Manea, Richardsen, Schmid Subsequences with Generalised Gap Constraints 8 / 16

Hardness of MatchSLS

Definition (k-Clique)

Given a graph G = (V ,E) with n vertices, decide whether there is a
subset K ⊆ V of k vertices that are pairwise adjacent.

Alternative question: Is the k × k matrix containing only 1’s a principal
submatrix of the adjacency matrix A of G?

Example:

A =

1 1 0 1 0 1
1 1 0 1 1 1
0 0 1 0 1 0
1 1 0 1 0 1
0 1 1 0 1 0
1 1 0 1 0 1

=⇒ K = {v1, v2, v4, v6} is a 4-Clique

Manea, Richardsen, Schmid Subsequences with Generalised Gap Constraints 8 / 16

Hardness of MatchSLS

Definition (k-Clique)

Given a graph G = (V ,E) with n vertices, decide whether there is a
subset K ⊆ V of k vertices that are pairwise adjacent.

Alternative question: Is the k × k matrix containing only 1’s a principal
submatrix of the adjacency matrix A of G?

Example:

A =

1 1 0 1 0 1
1 1 0 1 1 1
0 0 1 0 1 0
1 1 0 1 0 1
0 1 1 0 1 0
1 1 0 1 0 1

=⇒ K = {v1, v2, v4, v6} is a 4-Clique

Manea, Richardsen, Schmid Subsequences with Generalised Gap Constraints 8 / 16

Hardness of MatchSLS

Definition (k-Clique)

Given a graph G = (V ,E) with n vertices, decide whether there is a
subset K ⊆ V of k vertices that are pairwise adjacent.

Alternative question: Is the k × k matrix containing only 1’s a principal
submatrix of the adjacency matrix A of G?

Example:

A =

1 1 0 1 0 1
1 1 0 1 1 1
0 0 1 0 1 0
1 1 0 1 0 1
0 1 1 0 1 0
1 1 0 1 0 1

 =⇒ K = {v1, v2, v4, v6} is a 4-Clique

Manea, Richardsen, Schmid Subsequences with Generalised Gap Constraints 8 / 16

Hardness of MatchSLS

Pattern p = 01k·k0, Text w = 0a11 . . . ann0.

Anchor: Enforce e(1) = 1 with the constraint
(1, k2 + 2, L(n2)).

Constrain the gap between the anchor and each
element on the diagonal to be a multiple of
n + 1.

Constrain the gap between elements on
subsequent rows and in the same column to be
one smaller than a multiple of n.

Constrain the gap between the first and last
element of each row to be smaller than n − 1.

1 1 0 1 0 1
1 1 0 1 1 1
0 0 1 0 1 0
1 1 0 1 0 1
0 1 1 0 1 0
1 1 0 1 0 1

Theorem

MatchSLS parameterised by |p| is W [1]-hard, even for constant
gapsize(C) and binary alphabet Σ.

Manea, Richardsen, Schmid Subsequences with Generalised Gap Constraints 9 / 16

Hardness of MatchSLS

Pattern p = 01k·k0, Text w = 0a11 . . . ann0.

Anchor: Enforce e(1) = 1 with the constraint
(1, k2 + 2, L(n2)).

Constrain the gap between the anchor and each
element on the diagonal to be a multiple of
n + 1.

Constrain the gap between elements on
subsequent rows and in the same column to be
one smaller than a multiple of n.

Constrain the gap between the first and last
element of each row to be smaller than n − 1.

1 1 0 1 0 1
1 1 0 1 1 1
0 0 1 0 1 0
1 1 0 1 0 1
0 1 1 0 1 0
1 1 0 1 0 1

Theorem

MatchSLS parameterised by |p| is W [1]-hard, even for constant
gapsize(C) and binary alphabet Σ.

Manea, Richardsen, Schmid Subsequences with Generalised Gap Constraints 9 / 16

Hardness of MatchSLS

Pattern p = 01k·k0, Text w = 0a11 . . . ann0.

Anchor: Enforce e(1) = 1 with the constraint
(1, k2 + 2, L(n2)).

Constrain the gap between the anchor and each
element on the diagonal to be a multiple of
n + 1.

Constrain the gap between elements on
subsequent rows and in the same column to be
one smaller than a multiple of n.

Constrain the gap between the first and last
element of each row to be smaller than n − 1.

1 1 0 1 0 1
1 1 0 1 1 1
0 0 1 0 1 0
1 1 0 1 0 1
0 1 1 0 1 0
1 1 0 1 0 1

Theorem

MatchSLS parameterised by |p| is W [1]-hard, even for constant
gapsize(C) and binary alphabet Σ.

Manea, Richardsen, Schmid Subsequences with Generalised Gap Constraints 9 / 16

Hardness of MatchSLS

Pattern p = 01k·k0, Text w = 0a11 . . . ann0.

Anchor: Enforce e(1) = 1 with the constraint
(1, k2 + 2, L(n2)).

Constrain the gap between the anchor and each
element on the diagonal to be a multiple of
n + 1.

Constrain the gap between elements on
subsequent rows and in the same column to be
one smaller than a multiple of n.

Constrain the gap between the first and last
element of each row to be smaller than n − 1.

1 1 0 1 0 1
1 1 0 1 1 1
0 0 1 0 1 0
1 1 0 1 0 1
0 1 1 0 1 0
1 1 0 1 0 1

Theorem

MatchSLS parameterised by |p| is W [1]-hard, even for constant
gapsize(C) and binary alphabet Σ.

Manea, Richardsen, Schmid Subsequences with Generalised Gap Constraints 9 / 16

Hardness of MatchSLS

Pattern p = 01k·k0, Text w = 0a11 . . . ann0.

Anchor: Enforce e(1) = 1 with the constraint
(1, k2 + 2, L(n2)).

Constrain the gap between the anchor and each
element on the diagonal to be a multiple of
n + 1.

Constrain the gap between elements on
subsequent rows and in the same column to be
one smaller than a multiple of n.

Constrain the gap between the first and last
element of each row to be smaller than n − 1.

1 1 0 1 0 1
1 1 0 1 1 1
0 0 1 0 1 0
1 1 0 1 0 1
0 1 1 0 1 0
1 1 0 1 0 1

Theorem

MatchSLS parameterised by |p| is W [1]-hard, even for constant
gapsize(C) and binary alphabet Σ.

Manea, Richardsen, Schmid Subsequences with Generalised Gap Constraints 9 / 16

Hardness of MatchSLS

Pattern p = 01k·k0, Text w = 0a11 . . . ann0.

Anchor: Enforce e(1) = 1 with the constraint
(1, k2 + 2, L(n2)).

Constrain the gap between the anchor and each
element on the diagonal to be a multiple of
n + 1.

Constrain the gap between elements on
subsequent rows and in the same column to be
one smaller than a multiple of n.

Constrain the gap between the first and last
element of each row to be smaller than n − 1.

1 1 0 1 0 1
1 1 0 1 1 1
0 0 1 0 1 0
1 1 0 1 0 1
0 1 1 0 1 0
1 1 0 1 0 1

Theorem

MatchSLS parameterised by |p| is W [1]-hard, even for constant
gapsize(C) and binary alphabet Σ.

Manea, Richardsen, Schmid Subsequences with Generalised Gap Constraints 9 / 16

Hardness of MatchREG

Definition (1-in-3-3SAT)

Given a set of variables A = {x1, . . . , xn} and clauses c1, . . . , cm ⊆ A with
|cj | = 3, find a subset B ⊆ A, such that |ci ∩ B| = 1 for every j ∈ [m].

Pattern p = (b#)n(b#)m

Text w = (bb#)n(bbb#)m

First part: decide xi ∈ B for i ∈ [n].

Second part: decide which of the 3 variables from cj is in B for
j ∈ [m] (need some ordering on the variables).

Use constraints to ensure that assignments are consistent.

Theorem

MatchREG is NP-complete, even for binary alphabet Σ and with
gap-constraints that can be represented by DFAs with at most 8 states.

Manea, Richardsen, Schmid Subsequences with Generalised Gap Constraints 10 / 16

The Graph Structure of Constraints

p = x y z y x x z y x

1 2 3 4 5 6 7 8 9

Construct partial embeddings by adding the positions one-by-one in
order σ = (v1, . . . , vm).

At each time t, we compute all possible partial embeddings, but we
only care about the the values e(vi), where i ≤ t and (vi , vj) ∈ E for
some j > t.

When adding e(vt) to the embedding, combine all previously possible
embeddings with all possible values of e(vt), then remove all
embeddings that violate any constraint involving vt .

Manea, Richardsen, Schmid Subsequences with Generalised Gap Constraints 11 / 16

The Graph Structure of Constraints

p = x y z y x x z y x

1 2 3 4 5 6 7 8 9

Construct partial embeddings by adding the positions one-by-one in
order σ = (v1, . . . , vm).

At each time t, we compute all possible partial embeddings, but we
only care about the the values e(vi), where i ≤ t and (vi , vj) ∈ E for
some j > t.

When adding e(vt) to the embedding, combine all previously possible
embeddings with all possible values of e(vt), then remove all
embeddings that violate any constraint involving vt .

Manea, Richardsen, Schmid Subsequences with Generalised Gap Constraints 11 / 16

The Graph Structure of Constraints

p = x y z y x x z y x

v4 v6 v9 v8 v5 v7 v2 v3 v1

Construct partial embeddings by adding the positions one-by-one in
order σ = (v1, . . . , vm).

At each time t, we compute all possible partial embeddings, but we
only care about the the values e(vi), where i ≤ t and (vi , vj) ∈ E for
some j > t.

When adding e(vt) to the embedding, combine all previously possible
embeddings with all possible values of e(vt), then remove all
embeddings that violate any constraint involving vt .

Manea, Richardsen, Schmid Subsequences with Generalised Gap Constraints 11 / 16

The Graph Structure of Constraints

p = x y z y x x z y x

v4 v6 v9 v8 v5 v7 v2 v3 v1

Construct partial embeddings by adding the positions one-by-one in
order σ = (v1, . . . , vm).

At each time t, we compute all possible partial embeddings, but we
only care about the the values e(vi), where i ≤ t and (vi , vj) ∈ E for
some j > t.

When adding e(vt) to the embedding, combine all previously possible
embeddings with all possible values of e(vt), then remove all
embeddings that violate any constraint involving vt .

Manea, Richardsen, Schmid Subsequences with Generalised Gap Constraints 11 / 16

The Graph Structure of Constraints

p = x y z y x x z y x

v4 v6 v9 v8 v5 v7 v3 v1v2

Construct partial embeddings by adding the positions one-by-one in
order σ = (v1, . . . , vm).

At each time t, we compute all possible partial embeddings, but we
only care about the the values e(vi), where i ≤ t and (vi , vj) ∈ E for
some j > t.

When adding e(vt) to the embedding, combine all previously possible
embeddings with all possible values of e(vt), then remove all
embeddings that violate any constraint involving vt .

Manea, Richardsen, Schmid Subsequences with Generalised Gap Constraints 11 / 16

The Graph Structure of Constraints

p = x y z y x x z y x

v4 v6 v9 v8 v5 v7 v3 v1v2

Construct partial embeddings by adding the positions one-by-one in
order σ = (v1, . . . , vm).

At each time t, we compute all possible partial embeddings, but we
only care about the the values e(vi), where i ≤ t and (vi , vj) ∈ E for
some j > t.

When adding e(vt) to the embedding, combine all previously possible
embeddings with all possible values of e(vt), then remove all
embeddings that violate any constraint involving vt .

Manea, Richardsen, Schmid Subsequences with Generalised Gap Constraints 11 / 16

The Graph Structure of Constraints

p = x y z y x x z y x

v4 v6 v9 v8 v5 v7 v1v2 v3

Construct partial embeddings by adding the positions one-by-one in
order σ = (v1, . . . , vm).

At each time t, we compute all possible partial embeddings, but we
only care about the the values e(vi), where i ≤ t and (vi , vj) ∈ E for
some j > t.

When adding e(vt) to the embedding, combine all previously possible
embeddings with all possible values of e(vt), then remove all
embeddings that violate any constraint involving vt .

Manea, Richardsen, Schmid Subsequences with Generalised Gap Constraints 11 / 16

The Graph Structure of Constraints

p = x y z y x x z y x

v4 v6 v9 v8 v5 v7 v1v2 v3

Construct partial embeddings by adding the positions one-by-one in
order σ = (v1, . . . , vm).

At each time t, we compute all possible partial embeddings, but we
only care about the the values e(vi), where i ≤ t and (vi , vj) ∈ E for
some j > t.

When adding e(vt) to the embedding, combine all previously possible
embeddings with all possible values of e(vt), then remove all
embeddings that violate any constraint involving vt .

Manea, Richardsen, Schmid Subsequences with Generalised Gap Constraints 11 / 16

The Graph Structure of Constraints

p = x y z y x x z y x

v4 v6 v9 v8 v5 v7 v1v2 v3

Construct partial embeddings by adding the positions one-by-one in
order σ = (v1, . . . , vm).

At each time t, we compute all possible partial embeddings, but we
only care about the the values e(vi), where i ≤ t and (vi , vj) ∈ E for
some j > t.

When adding e(vt) to the embedding, combine all previously possible
embeddings with all possible values of e(vt), then remove all
embeddings that violate any constraint involving vt .

Manea, Richardsen, Schmid Subsequences with Generalised Gap Constraints 11 / 16

The Graph Structure of Constraints

p = x y z y x x z y x

v6 v9 v8 v5 v7 v1v2 v3v4

Construct partial embeddings by adding the positions one-by-one in
order σ = (v1, . . . , vm).

At each time t, we compute all possible partial embeddings, but we
only care about the the values e(vi), where i ≤ t and (vi , vj) ∈ E for
some j > t.

When adding e(vt) to the embedding, combine all previously possible
embeddings with all possible values of e(vt), then remove all
embeddings that violate any constraint involving vt .

Manea, Richardsen, Schmid Subsequences with Generalised Gap Constraints 11 / 16

The Graph Structure of Constraints

p = x y z y x x z y x

v6 v9 v8 v5 v7 v1v2 v3v4

Construct partial embeddings by adding the positions one-by-one in
order σ = (v1, . . . , vm).

At each time t, we compute all possible partial embeddings, but we
only care about the the values e(vi), where i ≤ t and (vi , vj) ∈ E for
some j > t.

When adding e(vt) to the embedding, combine all previously possible
embeddings with all possible values of e(vt), then remove all
embeddings that violate any constraint involving vt .

Manea, Richardsen, Schmid Subsequences with Generalised Gap Constraints 11 / 16

The Graph Structure of Constraints

p = x y z y x x z y x

v6 v9 v8 v5 v7 v2 v3v4 v1

Construct partial embeddings by adding the positions one-by-one in
order σ = (v1, . . . , vm).

At each time t, we compute all possible partial embeddings, but we
only care about the the values e(vi), where i ≤ t and (vi , vj) ∈ E for
some j > t.

When adding e(vt) to the embedding, combine all previously possible
embeddings with all possible values of e(vt), then remove all
embeddings that violate any constraint involving vt .

Manea, Richardsen, Schmid Subsequences with Generalised Gap Constraints 11 / 16

The Graph Structure of Constraints

p = x y z y x x z y x

v6 v9 v8 v7 v2 v3v4 v1v5

Construct partial embeddings by adding the positions one-by-one in
order σ = (v1, . . . , vm).

At each time t, we compute all possible partial embeddings, but we
only care about the the values e(vi), where i ≤ t and (vi , vj) ∈ E for
some j > t.

When adding e(vt) to the embedding, combine all previously possible
embeddings with all possible values of e(vt), then remove all
embeddings that violate any constraint involving vt .

Manea, Richardsen, Schmid Subsequences with Generalised Gap Constraints 11 / 16

The Graph Structure of Constraints

p = x y z y x x z y x

v6 v9 v8 v7 v2 v3v4 v1v5

Construct partial embeddings by adding the positions one-by-one in
order σ = (v1, . . . , vm).

At each time t, we compute all possible partial embeddings, but we
only care about the the values e(vi), where i ≤ t and (vi , vj) ∈ E for
some j > t.

When adding e(vt) to the embedding, combine all previously possible
embeddings with all possible values of e(vt), then remove all
embeddings that violate any constraint involving vt .

Manea, Richardsen, Schmid Subsequences with Generalised Gap Constraints 11 / 16

The Graph Structure of Constraints

p = x y z y x x z y x

v9 v8 v7 v2 v3v4 v1v5v6

Construct partial embeddings by adding the positions one-by-one in
order σ = (v1, . . . , vm).

At each time t, we compute all possible partial embeddings, but we
only care about the the values e(vi), where i ≤ t and (vi , vj) ∈ E for
some j > t.

When adding e(vt) to the embedding, combine all previously possible
embeddings with all possible values of e(vt), then remove all
embeddings that violate any constraint involving vt .

Manea, Richardsen, Schmid Subsequences with Generalised Gap Constraints 11 / 16

The Graph Structure of Constraints

p = x y z y x x z y x

v9 v8 v7 v2 v3v4 v1v5v6

Construct partial embeddings by adding the positions one-by-one in
order σ = (v1, . . . , vm).

At each time t, we compute all possible partial embeddings, but we
only care about the the values e(vi), where i ≤ t and (vi , vj) ∈ E for
some j > t.

When adding e(vt) to the embedding, combine all previously possible
embeddings with all possible values of e(vt), then remove all
embeddings that violate any constraint involving vt .

Manea, Richardsen, Schmid Subsequences with Generalised Gap Constraints 11 / 16

The Graph Structure of Constraints

p = x y z y x x z y x

v9 v8 v7 v2 v3 v1v5v6v4

Construct partial embeddings by adding the positions one-by-one in
order σ = (v1, . . . , vm).

At each time t, we compute all possible partial embeddings, but we
only care about the the values e(vi), where i ≤ t and (vi , vj) ∈ E for
some j > t.

When adding e(vt) to the embedding, combine all previously possible
embeddings with all possible values of e(vt), then remove all
embeddings that violate any constraint involving vt .

Manea, Richardsen, Schmid Subsequences with Generalised Gap Constraints 11 / 16

The Graph Structure of Constraints

p = x y z y x x z y x

v9 v8 v2 v3 v1v5v6v4 v7

Construct partial embeddings by adding the positions one-by-one in
order σ = (v1, . . . , vm).

At each time t, we compute all possible partial embeddings, but we
only care about the the values e(vi), where i ≤ t and (vi , vj) ∈ E for
some j > t.

When adding e(vt) to the embedding, combine all previously possible
embeddings with all possible values of e(vt), then remove all
embeddings that violate any constraint involving vt .

Manea, Richardsen, Schmid Subsequences with Generalised Gap Constraints 11 / 16

The Graph Structure of Constraints

p = x y z y x x z y x

v9 v8 v2 v3 v1v5v6v4 v7

Construct partial embeddings by adding the positions one-by-one in
order σ = (v1, . . . , vm).

At each time t, we compute all possible partial embeddings, but we
only care about the the values e(vi), where i ≤ t and (vi , vj) ∈ E for
some j > t.

When adding e(vt) to the embedding, combine all previously possible
embeddings with all possible values of e(vt), then remove all
embeddings that violate any constraint involving vt .

Manea, Richardsen, Schmid Subsequences with Generalised Gap Constraints 11 / 16

The Graph Structure of Constraints

p = x y z y x x z y x

v9 v8 v3 v1v5v6v4 v7 v2

Construct partial embeddings by adding the positions one-by-one in
order σ = (v1, . . . , vm).

At each time t, we compute all possible partial embeddings, but we
only care about the the values e(vi), where i ≤ t and (vi , vj) ∈ E for
some j > t.

When adding e(vt) to the embedding, combine all previously possible
embeddings with all possible values of e(vt), then remove all
embeddings that violate any constraint involving vt .

Manea, Richardsen, Schmid Subsequences with Generalised Gap Constraints 11 / 16

The Graph Structure of Constraints

p = x y z y x x z y x

v9 v3 v1v5v6v4 v7 v2v8

Construct partial embeddings by adding the positions one-by-one in
order σ = (v1, . . . , vm).

At each time t, we compute all possible partial embeddings, but we
only care about the the values e(vi), where i ≤ t and (vi , vj) ∈ E for
some j > t.

When adding e(vt) to the embedding, combine all previously possible
embeddings with all possible values of e(vt), then remove all
embeddings that violate any constraint involving vt .

Manea, Richardsen, Schmid Subsequences with Generalised Gap Constraints 11 / 16

The Graph Structure of Constraints

p = x y z y x x z y x

v9 v3 v1v5v6v4 v7 v2v8

Construct partial embeddings by adding the positions one-by-one in
order σ = (v1, . . . , vm).

At each time t, we compute all possible partial embeddings, but we
only care about the the values e(vi), where i ≤ t and (vi , vj) ∈ E for
some j > t.

When adding e(vt) to the embedding, combine all previously possible
embeddings with all possible values of e(vt), then remove all
embeddings that violate any constraint involving vt .

Manea, Richardsen, Schmid Subsequences with Generalised Gap Constraints 11 / 16

The Graph Structure of Constraints

p = x y z y x x z y x

v9 v3 v1v6v4 v2v8 v5 v7

Construct partial embeddings by adding the positions one-by-one in
order σ = (v1, . . . , vm).

At each time t, we compute all possible partial embeddings, but we
only care about the the values e(vi), where i ≤ t and (vi , vj) ∈ E for
some j > t.

When adding e(vt) to the embedding, combine all previously possible
embeddings with all possible values of e(vt), then remove all
embeddings that violate any constraint involving vt .

Manea, Richardsen, Schmid Subsequences with Generalised Gap Constraints 11 / 16

The Graph Structure of Constraints

p = x y z y x x z y x

v3 v1v6v4 v2v8 v5 v7v9

Construct partial embeddings by adding the positions one-by-one in
order σ = (v1, . . . , vm).

At each time t, we compute all possible partial embeddings, but we
only care about the the values e(vi), where i ≤ t and (vi , vj) ∈ E for
some j > t.

When adding e(vt) to the embedding, combine all previously possible
embeddings with all possible values of e(vt), then remove all
embeddings that violate any constraint involving vt .

Manea, Richardsen, Schmid Subsequences with Generalised Gap Constraints 11 / 16

The Graph Structure of Constraints

p = x y z y x x z y x

v3 v1v6v4 v2v8 v5 v7v9

Construct partial embeddings by adding the positions one-by-one in
order σ = (v1, . . . , vm).

At each time t, we compute all possible partial embeddings, but we
only care about the the values e(vi), where i ≤ t and (vi , vj) ∈ E for
some j > t.

When adding e(vt) to the embedding, combine all previously possible
embeddings with all possible values of e(vt), then remove all
embeddings that violate any constraint involving vt .

Manea, Richardsen, Schmid Subsequences with Generalised Gap Constraints 11 / 16

The Graph Structure of Constraints

p = x y z y x x z y x

v3 v1v4 v2v5 v7v6 v9 v8

Construct partial embeddings by adding the positions one-by-one in
order σ = (v1, . . . , vm).

At each time t, we compute all possible partial embeddings, but we
only care about the the values e(vi), where i ≤ t and (vi , vj) ∈ E for
some j > t.

When adding e(vt) to the embedding, combine all previously possible
embeddings with all possible values of e(vt), then remove all
embeddings that violate any constraint involving vt .

Manea, Richardsen, Schmid Subsequences with Generalised Gap Constraints 11 / 16

The Graph Structure of Constraints

Definition (Vertex separation number)

Given a linear ordering σ = (v1, . . . , vn) of vertices in a graph, the vertex
separation number of σ is the smallest number s such that, for each vertex
vi at most s vertices of v1, . . . , vi−1 have some vj with j ≥ i as neighbour.
The vertex separation number of a graph is the minimum vertex separation
number over all linear orderings of the graph.

Theorem

If the vertex separation number of the constraint graph is bound by k ,
MatchREG and MatchSLS can be solved in O(m2nk+1 +m2n2 log log n)
and O(m2nk+1) time respectively.
Moreover, both variants are W[1]-hard (parameterized by the vertex
separation number of the constraint graph).

The second part is witnessed by the k-Clique reduction from earlier.

Manea, Richardsen, Schmid Subsequences with Generalised Gap Constraints 12 / 16

The Graph Structure of Constraints

Definition (Vertex separation number)

Given a linear ordering σ = (v1, . . . , vn) of vertices in a graph, the vertex
separation number of σ is the smallest number s such that, for each vertex
vi at most s vertices of v1, . . . , vi−1 have some vj with j ≥ i as neighbour.
The vertex separation number of a graph is the minimum vertex separation
number over all linear orderings of the graph.

Theorem

If the vertex separation number of the constraint graph is bound by k ,
MatchREG and MatchSLS can be solved in O(m2nk+1 +m2n2 log log n)
and O(m2nk+1) time respectively.

Moreover, both variants are W[1]-hard (parameterized by the vertex
separation number of the constraint graph).

The second part is witnessed by the k-Clique reduction from earlier.

Manea, Richardsen, Schmid Subsequences with Generalised Gap Constraints 12 / 16

The Graph Structure of Constraints

Definition (Vertex separation number)

Given a linear ordering σ = (v1, . . . , vn) of vertices in a graph, the vertex
separation number of σ is the smallest number s such that, for each vertex
vi at most s vertices of v1, . . . , vi−1 have some vj with j ≥ i as neighbour.
The vertex separation number of a graph is the minimum vertex separation
number over all linear orderings of the graph.

Theorem

If the vertex separation number of the constraint graph is bound by k ,
MatchREG and MatchSLS can be solved in O(m2nk+1 +m2n2 log log n)
and O(m2nk+1) time respectively.
Moreover, both variants are W[1]-hard (parameterized by the vertex
separation number of the constraint graph).

The second part is witnessed by the k-Clique reduction from earlier.

Manea, Richardsen, Schmid Subsequences with Generalised Gap Constraints 12 / 16

The Graph Structure of Constraints

Definition (Vertex separation number)

Given a linear ordering σ = (v1, . . . , vn) of vertices in a graph, the vertex
separation number of σ is the smallest number s such that, for each vertex
vi at most s vertices of v1, . . . , vi−1 have some vj with j ≥ i as neighbour.
The vertex separation number of a graph is the minimum vertex separation
number over all linear orderings of the graph.

Theorem

If the vertex separation number of the constraint graph is bound by k ,
MatchREG and MatchSLS can be solved in O(m2nk+1 +m2n2 log log n)
and O(m2nk+1) time respectively.
Moreover, both variants are W[1]-hard (parameterized by the vertex
separation number of the constraint graph).

The second part is witnessed by the k-Clique reduction from earlier.

Manea, Richardsen, Schmid Subsequences with Generalised Gap Constraints 12 / 16

The Interval Structure of Constraints

For C = (i , j , L) define interval(C) = [i , j − 1].

Let C and C ′ be two constraints.

C contains C ′ (or C ′ is contained in C) if interval(C ′) ⊊ interval(C)

p = x y z y x

C

C ′

C and C ′ intersect if interval(C) ∩ interval(C ′) is neither of
interval(C), interval(C ′) or ∅.

p = x y z y x

C C ′

What about Match with pairwise non-intersecting constraints?

Manea, Richardsen, Schmid Subsequences with Generalised Gap Constraints 13 / 16

The Interval Structure of Constraints

For C = (i , j , L) define interval(C) = [i , j − 1].
Let C and C ′ be two constraints.

C contains C ′ (or C ′ is contained in C) if interval(C ′) ⊊ interval(C)

p = x y z y x

C

C ′

C and C ′ intersect if interval(C) ∩ interval(C ′) is neither of
interval(C), interval(C ′) or ∅.

p = x y z y x

C C ′

What about Match with pairwise non-intersecting constraints?

Manea, Richardsen, Schmid Subsequences with Generalised Gap Constraints 13 / 16

The Interval Structure of Constraints

For C = (i , j , L) define interval(C) = [i , j − 1].
Let C and C ′ be two constraints.

C contains C ′ (or C ′ is contained in C) if interval(C ′) ⊊ interval(C)

p = x y z y x

C

C ′

C and C ′ intersect if interval(C) ∩ interval(C ′) is neither of
interval(C), interval(C ′) or ∅.

p = x y z y x

C C ′

What about Match with pairwise non-intersecting constraints?

Manea, Richardsen, Schmid Subsequences with Generalised Gap Constraints 13 / 16

The Interval Structure of Constraints

For C = (i , j , L) define interval(C) = [i , j − 1].
Let C and C ′ be two constraints.

C contains C ′ (or C ′ is contained in C) if interval(C ′) ⊊ interval(C)

p = x y z y x

C

C ′

C and C ′ intersect if interval(C) ∩ interval(C ′) is neither of
interval(C), interval(C ′) or ∅.

p = x y z y x

C C ′

What about Match with pairwise non-intersecting constraints?

Manea, Richardsen, Schmid Subsequences with Generalised Gap Constraints 13 / 16

The Interval Structure of Constraints

For C = (i , j , L) define interval(C) = [i , j − 1].
Let C and C ′ be two constraints.

C contains C ′ (or C ′ is contained in C) if interval(C ′) ⊊ interval(C)

p = x y z y x

C

C ′

C and C ′ intersect if interval(C) ∩ interval(C ′) is neither of
interval(C), interval(C ′) or ∅.

p = x y z y x

C C ′

What about Match with pairwise non-intersecting constraints?

Manea, Richardsen, Schmid Subsequences with Generalised Gap Constraints 13 / 16

Matching with non-intersecting constraints

p = x y z y x x z y x

We can recursively construct the partial embeddings of p[i ..j] for each
constraint (i , j , L) bottom-up the tree.

Theorem

If constraints are pairwise non-intersecting, MatchREG and MatchSLS

can be solved in O(nωk + n2k log log n) and O(nωk) time respectively,
where O(nω) is the time needed to multiply two boolean matrices of size
n × n.

Manea, Richardsen, Schmid Subsequences with Generalised Gap Constraints 14 / 16

Matching with non-intersecting constraints

p = x y z y x x z y x

We can recursively construct the partial embeddings of p[i ..j] for each
constraint (i , j , L) bottom-up the tree.

Theorem

If constraints are pairwise non-intersecting, MatchREG and MatchSLS

can be solved in O(nωk + n2k log log n) and O(nωk) time respectively,
where O(nω) is the time needed to multiply two boolean matrices of size
n × n.

Manea, Richardsen, Schmid Subsequences with Generalised Gap Constraints 14 / 16

Matching with non-intersecting constraints

p = x y z y x x z y x

We can recursively construct the partial embeddings of p[i ..j] for each
constraint (i , j , L) bottom-up the tree.

Theorem

If constraints are pairwise non-intersecting, MatchREG and MatchSLS

can be solved in O(nωk + n2k log log n) and O(nωk) time respectively,
where O(nω) is the time needed to multiply two boolean matrices of size
n × n.

Manea, Richardsen, Schmid Subsequences with Generalised Gap Constraints 14 / 16

Matching with non-intersecting constraints

p = x y z y x x z y x

We can recursively construct the partial embeddings of p[i ..j] for each
constraint (i , j , L) bottom-up the tree.

Theorem

If constraints are pairwise non-intersecting, MatchREG and MatchSLS

can be solved in O(nωk + n2k log log n) and O(nωk) time respectively,
where O(nω) is the time needed to multiply two boolean matrices of size
n × n.

Manea, Richardsen, Schmid Subsequences with Generalised Gap Constraints 14 / 16

Matching with non-intersecting constraints

p = x y z y x x z y x

We can recursively construct the partial embeddings of p[i ..j] for each
constraint (i , j , L) bottom-up the tree.

Theorem

If constraints are pairwise non-intersecting, MatchREG and MatchSLS

can be solved in O(nωk + n2k log log n) and O(nωk) time respectively,
where O(nω) is the time needed to multiply two boolean matrices of size
n × n.

Manea, Richardsen, Schmid Subsequences with Generalised Gap Constraints 14 / 16

Matching with non-intersecting constraints

Definition (3-OV)

Given three sets A = {a⃗1, . . . , a⃗n},B = {b⃗1, . . . , b⃗n},C = {c⃗1, . . . , c⃗n} of
d-dimensional boolean vectors, are there indices i , j , k ∈ [n], such that
a⃗i · b⃗j · c⃗k = 0⃗?

p =

w = w0 Cw (b⃗n) · · · Cw (b⃗1) w0 § w0 Cw (c⃗1) · · · Cw (c⃗n) w0

Cp(a⃗n) · · · Cp(a⃗i) · · · Cp(a⃗1) § Cp(a⃗1) · · · Cp(a⃗i) · · · Cp(a⃗n)

Theorem

Both variants of Match with pairwise non-intersecting constraints
cannot be solved in O(ngkh) time with g + h < 3, unless the Strong
Exponential Time Hypothesis fails.

Manea, Richardsen, Schmid Subsequences with Generalised Gap Constraints 15 / 16

Matching with non-intersecting constraints

Definition (3-OV)

Given three sets A = {a⃗1, . . . , a⃗n},B = {b⃗1, . . . , b⃗n},C = {c⃗1, . . . , c⃗n} of
d-dimensional boolean vectors, are there indices i , j , k ∈ [n], such that
a⃗i · b⃗j · c⃗k = 0⃗?

p =

w = w0 Cw (b⃗n) · · · Cw (b⃗1) w0 § w0 Cw (c⃗1) · · · Cw (c⃗n) w0

Cp(a⃗n) · · · Cp(a⃗i) · · · Cp(a⃗1) § Cp(a⃗1) · · · Cp(a⃗i) · · · Cp(a⃗n)

Theorem

Both variants of Match with pairwise non-intersecting constraints
cannot be solved in O(ngkh) time with g + h < 3, unless the Strong
Exponential Time Hypothesis fails.

Manea, Richardsen, Schmid Subsequences with Generalised Gap Constraints 15 / 16

Matching with non-intersecting constraints

Definition (3-OV)

Given three sets A = {a⃗1, . . . , a⃗n},B = {b⃗1, . . . , b⃗n},C = {c⃗1, . . . , c⃗n} of
d-dimensional boolean vectors, are there indices i , j , k ∈ [n], such that
a⃗i · b⃗j · c⃗k = 0⃗?

p =

w = w0 Cw (b⃗n) · · · Cw (b⃗1) w0 § w0 Cw (c⃗1) · · · Cw (c⃗n) w0

Cp(a⃗n) · · · Cp(a⃗i) · · · Cp(a⃗1) § Cp(a⃗1) · · · Cp(a⃗i) · · · Cp(a⃗n)

Theorem

Both variants of Match with pairwise non-intersecting constraints
cannot be solved in O(ngkh) time with g + h < 3, unless the Strong
Exponential Time Hypothesis fails.

Manea, Richardsen, Schmid Subsequences with Generalised Gap Constraints 15 / 16

Matching with non-intersecting constraints

Definition (3-OV)

Given three sets A = {a⃗1, . . . , a⃗n},B = {b⃗1, . . . , b⃗n},C = {c⃗1, . . . , c⃗n} of
d-dimensional boolean vectors, are there indices i , j , k ∈ [n], such that
a⃗i · b⃗j · c⃗k = 0⃗?

p =

w = w0 Cw (b⃗n) · · · Cw (b⃗1) w0 § w0 Cw (c⃗1) · · · Cw (c⃗n) w0

Cp(a⃗n) · · · Cp(a⃗i) · · · Cp(a⃗1) § Cp(a⃗1) · · · Cp(a⃗i) · · · Cp(a⃗n)

Theorem

Both variants of Match with pairwise non-intersecting constraints
cannot be solved in O(ngkh) time with g + h < 3, unless the Strong
Exponential Time Hypothesis fails.

Manea, Richardsen, Schmid Subsequences with Generalised Gap Constraints 15 / 16

Thank you for your attention!

Summary:

Problem: Matching subsequences with gap constraints

Two types of constraints: regular and semilinear length constraints

Polynomial solutions for constant amount of constraints

Hardness of the problem parameterized by the length of the pattern,
witnessed by reductions from k-Clique and 1-in-3-3-SAT.

Graph structure of Constraints: Relation between complexity of the
problem and vertex separation number of constraint graph

Interval structure of Constraints: Efficient solution for the case of
non-intersecting constraints, lower bound via fine-grained reduction
from 3-OV.

Do you have any questions?

Manea, Richardsen, Schmid Subsequences with Generalised Gap Constraints 16 / 16

