Subsequences with Generalised Gap Constraints Upper and Lower Complexity Bounds

Florin Manea¹ Jonas Richardsen¹ Markus L. Schmid²

¹Computer Science Department and CIDAS, Universität Göttingen, Germany ²Humboldt-Universität zu Berlin, Germany

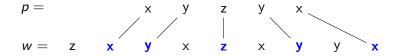
June 27, 2024

- A text w with |w| = n
- A pattern p with |p| = m

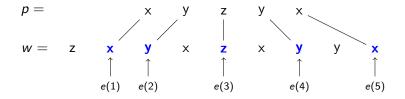
- A text w with |w| = n
- A pattern p with |p| = m

$$p =$$
 x y z y x
 $w =$ z x y x z x y y x

- A text w with |w| = n
- A pattern p with |p| = m

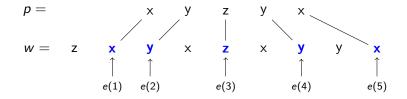


- A text w with |w| = n
- A pattern p with |p| = m



Given:

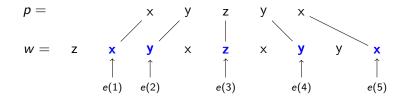
- A text w with |w| = n
- A pattern p with |p| = m



Notation: $p \leq_e w$ with $e : [m] \rightarrow [n]$ (or just $p \leq w$)

Given:

- A text w with |w| = n
- A pattern p with |p| = m



Notation: $p \leq_e w$ with $e : [m] \rightarrow [n]$ (or just $p \leq w$)

Properties of e:

e(1) < e(2) < · · · < e(m)
 w[e(i)] = p[i]

Definition

Given positions $i, j \in [m], i < j$, define

$$gap_{w,e}[i,j] := w[e(i) + 1..e(j) - 1]$$

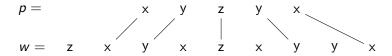
as the gap *between* the embedding of the *i*-th and *j*-th character.

Definition

Given positions $i, j \in [m], i < j$, define

$$\mathsf{gap}_{w,e}[i,j] := w[e(i) + 1..e(j) - 1]$$

as the gap between the embedding of the *i*-th and *j*-th character.

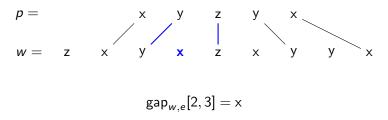


Definition

Given positions $i, j \in [m], i < j$, define

$$\mathsf{gap}_{w,e}[i,j] := w[e(i) + 1..e(j) - 1]$$

as the gap between the embedding of the *i*-th and *j*-th character.

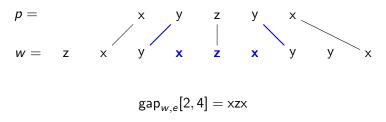


Definition

Given positions $i, j \in [m], i < j$, define

$$\mathsf{gap}_{w,e}[i,j] := w[e(i) + 1..e(j) - 1]$$

as the gap between the embedding of the *i*-th and *j*-th character.

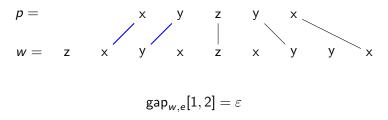


Definition

Given positions $i, j \in [m], i < j$, define

$$\mathsf{gap}_{w,e}[i,j] := w[e(i) + 1..e(j) - 1]$$

as the gap between the embedding of the *i*-th and *j*-th character.



Definition

A gap constraint is defined as a triple C = (i, j, L) with $i, j \in [m], i < j$ and $L \subseteq \Sigma^*$. An embedding *e* is said to satisfy the constraint if and only if

 $gap_{w,e}[i,j] \in L.$

Definition

A gap constraint is defined as a triple C = (i, j, L) with $i, j \in [m], i < j$ and $L \subseteq \Sigma^*$. An embedding *e* is said to satisfy the constraint if and only if

 $gap_{w,e}[i,j] \in L.$

Types of Gap-Constraints:

Definition

A gap constraint is defined as a triple C = (i, j, L) with $i, j \in [m], i < j$ and $L \subseteq \Sigma^*$. An embedding e is said to satisfy the constraint if and only if

 $gap_{w,e}[i,j] \in L.$

Types of Gap-Constraints:

● regular constraint: L ∈ REG

Definition

A gap constraint is defined as a triple C = (i, j, L) with $i, j \in [m], i < j$ and $L \subseteq \Sigma^*$. An embedding e is said to satisfy the constraint if and only if

 $gap_{w,e}[i,j] \in L.$

Types of Gap-Constraints:

regular constraint: L ∈ REG, size(C) = size(A) = O(states(A)|Σ|) with A being a DFA accepting L

Definition

A gap constraint is defined as a triple C = (i, j, L) with $i, j \in [m], i < j$ and $L \subseteq \Sigma^*$. An embedding e is said to satisfy the constraint if and only if

 $gap_{w,e}[i,j] \in L.$

Types of Gap-Constraints:

- regular constraint: L ∈ REG, size(C) = size(A) = O(states(A)|Σ|) with A being a DFA accepting L
- semilinear length constraint: L = {w ∈ Σ* | |w| ∈ S} with S a semilinear set

Definition

A gap constraint is defined as a triple C = (i, j, L) with $i, j \in [m], i < j$ and $L \subseteq \Sigma^*$. An embedding e is said to satisfy the constraint if and only if

 $gap_{w,e}[i,j] \in L.$

Types of Gap-Constraints:

- regular constraint: L ∈ REG, size(C) = size(A) = O(states(A)|Σ|) with A being a DFA accepting L
- semilinear length constraint: L = {w ∈ Σ* | |w| ∈ S} with S a semilinear set, size(C) = size(S)

Semilinear sets

Definition

A subset $L \subseteq \mathbb{N}$ is called *linear*, if it is of the form

$$L = L(x_0; x_1, \dots, x_m) = \{x_0 + \sum_{i=1}^m k_i x_i \mid k_1, \dots, k_m \in \mathbb{N}_0\}$$

with $x_0 \in \mathbb{N}_0, x_1, \dots, x_k \in \mathbb{N}$. A *semilinear* set is a finite union of linear sets.

Size of a (semi-)linear set:

- A linear set $L = L(x_0; x_1, ..., x_m)$ has size size(L) = m + 1.
- A semilinear set $L = \bigcup_{i=1}^{k} L_i$ with L_i linear sets has size size $(L) = \sum_{i=1}^{k} \text{size}(L_i)$.

Input:

- A text w with |w| = n
- A pattern p with |p| = m
- A set of constraints $C = \{C_1, \ldots, C_k\}$

Input:

- A text w with |w| = n
- A pattern p with |p| = m
- A set of constraints C = {C₁,..., C_k}, gapsize(C) := max_{C∈C}(size(C))

Input:

- A text w with |w| = n
- A pattern p with |p| = m
- A set of constraints C = {C₁,..., C_k}, gapsize(C) := max_{C∈C}(size(C))

Question: Is $p \neq C$ -subsequence of w

Input:

- A text w with |w| = n
- A pattern p with |p| = m
- A set of constraints C = {C₁,..., C_k}, gapsize(C) := max_{C∈C}(size(C))

Question: Is $p \in C$ -subsequence of w, i.e., is there an embedding $e : [m] \rightarrow [n]$ with

- $p \leq_e w$ and
- *e* satisfies C_{ℓ} for all $\ell \in [k]$?

Input:

- A text w with |w| = n
- A pattern p with |p| = m
- A set of constraints C = {C₁,..., C_k}, gapsize(C) := max_{C∈C}(size(C))

Question: Is $p \in C$ -subsequence of w, i.e., is there an embedding $e : [m] \rightarrow [n]$ with

- $p \leq_e w$ and
- *e* satisfies C_{ℓ} for all $\ell \in [k]$?

We use $\rm MATCH_{REG}$ and $\rm MATCH_{SLS}$ to denote the variants of the matching problem with regular and semilinear length constraints respectively.

Polynomial solutions for MATCH with constant $|\mathcal{C}|$

 $\mathrm{MATCH}_{\mathsf{REG}}:$ Construct an NFA to solve the problem:

Theorem

MATCH_{REG} can be solved in polynomial time for constant |C| and is fixed parameter tractable for the combined parameter (|p|, gapsize(C)).

 $\rm Match_{SLS}$: Enumerate all possible partial embeddings of the positions that have a constraint, then "fill the gaps":

Theorem

MATCH_{SLS} can be solved in polynomial time for constant |C|.

Hardness of $\mathrm{MATCH}_{\mathsf{SLS}}$

Definition (k-CLIQUE)

Given a graph G = (V, E) with *n* vertices, decide whether there is a subset $K \subseteq V$ of *k* vertices that are pairwise adjacent.

Hardness of $\mathrm{MATCH}_{\mathsf{SLS}}$

Definition (k-CLIQUE)

Given a graph G = (V, E) with *n* vertices, decide whether there is a subset $K \subseteq V$ of *k* vertices that are pairwise adjacent.

Alternative question: Is the $k \times k$ matrix containing only 1's a principal submatrix of the adjacency matrix A of G?

Definition (k-CLIQUE)

Given a graph G = (V, E) with *n* vertices, decide whether there is a subset $K \subseteq V$ of *k* vertices that are pairwise adjacent.

Alternative question: Is the $k \times k$ matrix containing only 1's a principal submatrix of the adjacency matrix A of G?

$$A = \begin{pmatrix} 1 & 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 \end{pmatrix}$$

Definition (k-CLIQUE)

Given a graph G = (V, E) with *n* vertices, decide whether there is a subset $K \subseteq V$ of *k* vertices that are pairwise adjacent.

Alternative question: Is the $k \times k$ matrix containing only 1's a principal submatrix of the adjacency matrix A of G?

$$A = \begin{pmatrix} 1 & 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 \end{pmatrix}$$

Definition (k-CLIQUE)

Given a graph G = (V, E) with *n* vertices, decide whether there is a subset $K \subseteq V$ of *k* vertices that are pairwise adjacent.

Alternative question: Is the $k \times k$ matrix containing only 1's a principal submatrix of the adjacency matrix A of G?

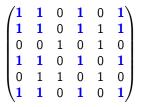
$$A = \begin{pmatrix} 1 & 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 \end{pmatrix} \implies \mathcal{K} = \{v_1, v_2, v_4, v_6\} \text{ is a 4-Clique}$$

• Pattern $p = 01^{k \cdot k} 0$, Text $w = 0a_{11} \dots a_{nn} 0$.

- Pattern $p = 01^{k \cdot k} 0$, Text $w = 0a_{11} \dots a_{nn} 0$.
- Anchor: Enforce e(1) = 1 with the constraint $(1, k^2 + 2, L(n^2))$.

Hardness of MATCHSLS

- Pattern $p = 01^{k \cdot k} 0$, Text $w = 0a_{11} \dots a_{nn} 0$.
- Anchor: Enforce e(1) = 1 with the constraint $(1, k^2 + 2, L(n^2)).$



Hardness of $\operatorname{Match}_{\mathsf{SLS}}$

- Pattern $p = 01^{k \cdot k} 0$, Text $w = 0a_{11} \dots a_{nn} 0$.
- Anchor: Enforce e(1) = 1 with the constraint $(1, k^2 + 2, L(n^2))$.
- Constrain the gap between the anchor and each element on the diagonal to be a multiple of n+1.
- Constrain the gap between elements on subsequent rows and in the same column to be one smaller than a multiple of *n*.

/1	1	0	1	0	1
1 1 0	1	0	1	1	1 1
1 0 1 0	0		0	1	0
1	1	0	1	0	1
0	1	1	0	1	0
1 0 1	1	0	1	0	1/

Hardness of $\operatorname{Match}_{\mathsf{SLS}}$

- Pattern $p = 01^{k \cdot k} 0$, Text $w = 0a_{11} \dots a_{nn} 0$.
- Anchor: Enforce e(1) = 1 with the constraint $(1, k^2 + 2, L(n^2))$.
- Constrain the gap between the anchor and each element on the diagonal to be a multiple of n+1.
- Constrain the gap between elements on subsequent rows and in the same column to be one smaller than a multiple of *n*.
- Constrain the gap between the first and last element of each row to be smaller than n-1.

/1	1	0	1	0	1
1	1	0	1	1	1
0	0		0	1	0
1	1	0	1	0	1
0	1	1	0	1	0
1	1	0	1	0	1 0 1

Hardness of MATCHSIS

- Pattern $p = 01^{k \cdot k} 0$, Text $w = 0a_{11} \dots a_{nn} 0$.
- Anchor: Enforce e(1) = 1 with the constraint $(1, k^2 + 2, L(n^2)).$
- Constrain the gap between the anchor and each element on the diagonal to be a multiple of n+1.
 Constrain the gap between elements on subsequent rows and in the same column to be $\begin{pmatrix} 1 & 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 \end{pmatrix}$
- subsequent rows and in the same column to be one smaller than a multiple of n.
- Constrain the gap between the first and last element of each row to be smaller than n-1.

Theorem

MATCH_{SLS} parameterised by |p| is W[1]-hard, even for constant gapsize(C) and binary alphabet Σ .

Hardness of $\mathrm{Match}_{\mathsf{REG}}$

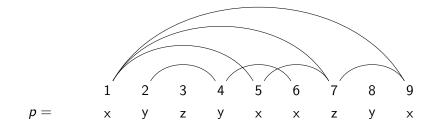
Definition (1-in-3-3SAT)

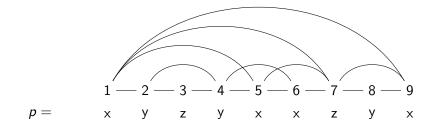
Given a set of variables $A = \{x_1, \ldots, x_n\}$ and clauses $c_1, \ldots, c_m \subseteq A$ with $|c_j| = 3$, find a subset $B \subseteq A$, such that $|c_i \cap B| = 1$ for every $j \in [m]$.

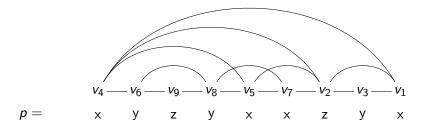
- Pattern $p = (b\#)^n (b\#)^m$
- Text $w = (bb\#)^n (bbb\#)^m$
- First part: decide $x_i \in B$ for $i \in [n]$.
- Second part: decide which of the 3 variables from c_j is in B for $j \in [m]$ (need some ordering on the variables).
- Use constraints to ensure that assignments are consistent.

Theorem

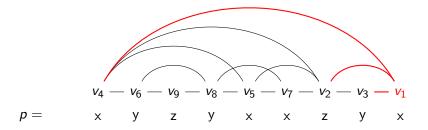
 $Match_{REG}$ is NP-complete, even for binary alphabet Σ and with gap-constraints that can be represented by DFAs with at most 8 states.



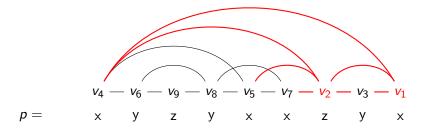




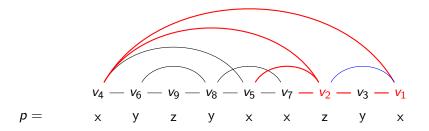
- Construct partial embeddings by adding the positions one-by-one in order σ = (v₁,..., v_m).
- At each time t, we compute all possible partial embeddings, but we only care about the the values e(v_i), where i ≤ t and (v_i, v_j) ∈ E for some j > t.
- When adding $e(v_t)$ to the embedding, combine all previously possible embeddings with all possible values of $e(v_t)$, then remove all embeddings that violate any constraint involving v_t .



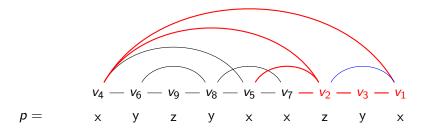
- Construct partial embeddings by adding the positions one-by-one in order σ = (v₁,..., v_m).
- At each time t, we compute all possible partial embeddings, but we only care about the the values e(v_i), where i ≤ t and (v_i, v_j) ∈ E for some j > t.
- When adding $e(v_t)$ to the embedding, combine all previously possible embeddings with all possible values of $e(v_t)$, then remove all embeddings that violate any constraint involving v_t .



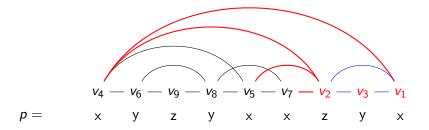
- Construct partial embeddings by adding the positions one-by-one in order σ = (v₁,..., v_m).
- At each time t, we compute all possible partial embeddings, but we only care about the the values e(v_i), where i ≤ t and (v_i, v_j) ∈ E for some j > t.
- When adding $e(v_t)$ to the embedding, combine all previously possible embeddings with all possible values of $e(v_t)$, then remove all embeddings that violate any constraint involving v_t .



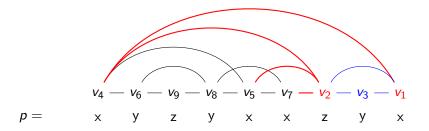
- Construct partial embeddings by adding the positions one-by-one in order σ = (v₁,..., v_m).
- At each time t, we compute all possible partial embeddings, but we only care about the the values e(v_i), where i ≤ t and (v_i, v_j) ∈ E for some j > t.
- When adding $e(v_t)$ to the embedding, combine all previously possible embeddings with all possible values of $e(v_t)$, then remove all embeddings that violate any constraint involving v_t .



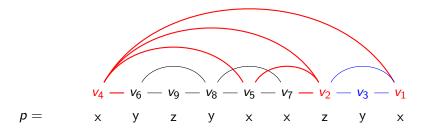
- Construct partial embeddings by adding the positions one-by-one in order σ = (v₁,..., v_m).
- At each time t, we compute all possible partial embeddings, but we only care about the the values e(v_i), where i ≤ t and (v_i, v_j) ∈ E for some j > t.
- When adding $e(v_t)$ to the embedding, combine all previously possible embeddings with all possible values of $e(v_t)$, then remove all embeddings that violate any constraint involving v_t .



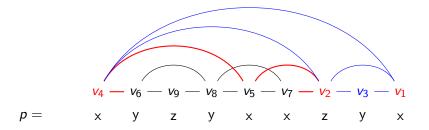
- Construct partial embeddings by adding the positions one-by-one in order σ = (v₁,..., v_m).
- At each time t, we compute all possible partial embeddings, but we only care about the the values e(v_i), where i ≤ t and (v_i, v_j) ∈ E for some j > t.
- When adding $e(v_t)$ to the embedding, combine all previously possible embeddings with all possible values of $e(v_t)$, then remove all embeddings that violate any constraint involving v_t .



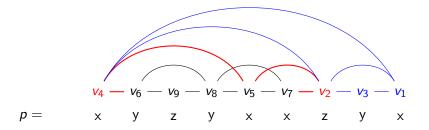
- Construct partial embeddings by adding the positions one-by-one in order σ = (v₁,..., v_m).
- At each time t, we compute all possible partial embeddings, but we only care about the the values e(v_i), where i ≤ t and (v_i, v_j) ∈ E for some j > t.
- When adding $e(v_t)$ to the embedding, combine all previously possible embeddings with all possible values of $e(v_t)$, then remove all embeddings that violate any constraint involving v_t .



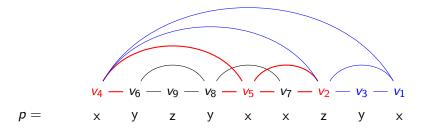
- Construct partial embeddings by adding the positions one-by-one in order σ = (v₁,..., v_m).
- At each time t, we compute all possible partial embeddings, but we only care about the the values e(v_i), where i ≤ t and (v_i, v_j) ∈ E for some j > t.
- When adding $e(v_t)$ to the embedding, combine all previously possible embeddings with all possible values of $e(v_t)$, then remove all embeddings that violate any constraint involving v_t .



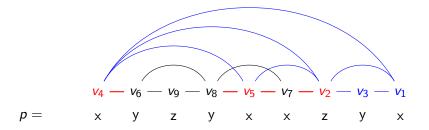
- Construct partial embeddings by adding the positions one-by-one in order σ = (v₁,..., v_m).
- At each time t, we compute all possible partial embeddings, but we only care about the the values e(v_i), where i ≤ t and (v_i, v_j) ∈ E for some j > t.
- When adding $e(v_t)$ to the embedding, combine all previously possible embeddings with all possible values of $e(v_t)$, then remove all embeddings that violate any constraint involving v_t .



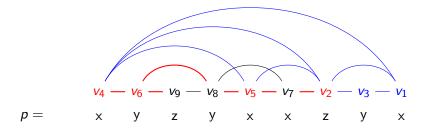
- Construct partial embeddings by adding the positions one-by-one in order σ = (v₁,..., v_m).
- At each time t, we compute all possible partial embeddings, but we only care about the the values e(v_i), where i ≤ t and (v_i, v_j) ∈ E for some j > t.
- When adding $e(v_t)$ to the embedding, combine all previously possible embeddings with all possible values of $e(v_t)$, then remove all embeddings that violate any constraint involving v_t .



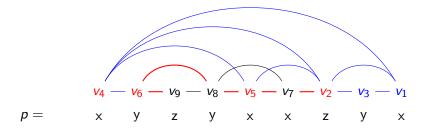
- Construct partial embeddings by adding the positions one-by-one in order σ = (v₁,..., v_m).
- At each time t, we compute all possible partial embeddings, but we only care about the the values e(v_i), where i ≤ t and (v_i, v_j) ∈ E for some j > t.
- When adding $e(v_t)$ to the embedding, combine all previously possible embeddings with all possible values of $e(v_t)$, then remove all embeddings that violate any constraint involving v_t .



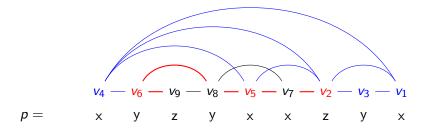
- Construct partial embeddings by adding the positions one-by-one in order σ = (v₁,..., v_m).
- At each time t, we compute all possible partial embeddings, but we only care about the the values e(v_i), where i ≤ t and (v_i, v_j) ∈ E for some j > t.
- When adding $e(v_t)$ to the embedding, combine all previously possible embeddings with all possible values of $e(v_t)$, then remove all embeddings that violate any constraint involving v_t .



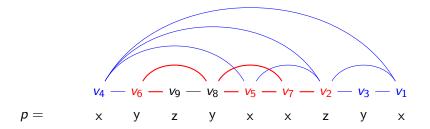
- Construct partial embeddings by adding the positions one-by-one in order σ = (v₁,..., v_m).
- At each time t, we compute all possible partial embeddings, but we only care about the the values e(v_i), where i ≤ t and (v_i, v_j) ∈ E for some j > t.
- When adding $e(v_t)$ to the embedding, combine all previously possible embeddings with all possible values of $e(v_t)$, then remove all embeddings that violate any constraint involving v_t .



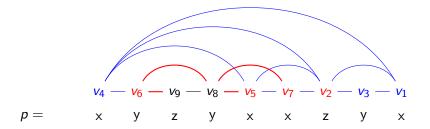
- Construct partial embeddings by adding the positions one-by-one in order σ = (v₁,..., v_m).
- At each time t, we compute all possible partial embeddings, but we only care about the the values e(v_i), where i ≤ t and (v_i, v_j) ∈ E for some j > t.
- When adding $e(v_t)$ to the embedding, combine all previously possible embeddings with all possible values of $e(v_t)$, then remove all embeddings that violate any constraint involving v_t .



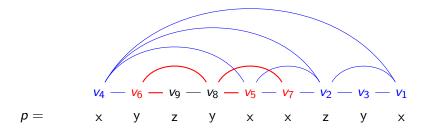
- Construct partial embeddings by adding the positions one-by-one in order σ = (v₁,..., v_m).
- At each time t, we compute all possible partial embeddings, but we only care about the the values e(v_i), where i ≤ t and (v_i, v_j) ∈ E for some j > t.
- When adding $e(v_t)$ to the embedding, combine all previously possible embeddings with all possible values of $e(v_t)$, then remove all embeddings that violate any constraint involving v_t .



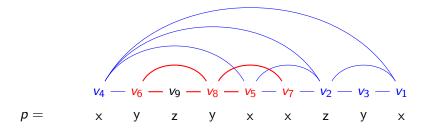
- Construct partial embeddings by adding the positions one-by-one in order σ = (v₁,..., v_m).
- At each time t, we compute all possible partial embeddings, but we only care about the the values e(v_i), where i ≤ t and (v_i, v_j) ∈ E for some j > t.
- When adding $e(v_t)$ to the embedding, combine all previously possible embeddings with all possible values of $e(v_t)$, then remove all embeddings that violate any constraint involving v_t .



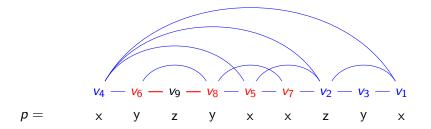
- Construct partial embeddings by adding the positions one-by-one in order σ = (v₁,..., v_m).
- At each time t, we compute all possible partial embeddings, but we only care about the the values e(v_i), where i ≤ t and (v_i, v_j) ∈ E for some j > t.
- When adding $e(v_t)$ to the embedding, combine all previously possible embeddings with all possible values of $e(v_t)$, then remove all embeddings that violate any constraint involving v_t .



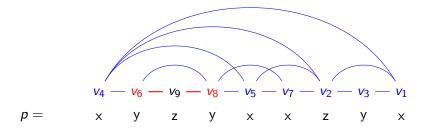
- Construct partial embeddings by adding the positions one-by-one in order σ = (v₁,..., v_m).
- At each time t, we compute all possible partial embeddings, but we only care about the the values e(v_i), where i ≤ t and (v_i, v_j) ∈ E for some j > t.
- When adding $e(v_t)$ to the embedding, combine all previously possible embeddings with all possible values of $e(v_t)$, then remove all embeddings that violate any constraint involving v_t .



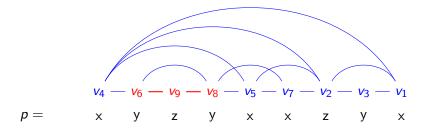
- Construct partial embeddings by adding the positions one-by-one in order σ = (v₁,..., v_m).
- At each time t, we compute all possible partial embeddings, but we only care about the the values e(v_i), where i ≤ t and (v_i, v_j) ∈ E for some j > t.
- When adding $e(v_t)$ to the embedding, combine all previously possible embeddings with all possible values of $e(v_t)$, then remove all embeddings that violate any constraint involving v_t .



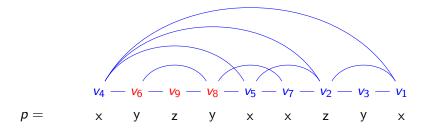
- Construct partial embeddings by adding the positions one-by-one in order σ = (v₁,..., v_m).
- At each time t, we compute all possible partial embeddings, but we only care about the the values e(v_i), where i ≤ t and (v_i, v_j) ∈ E for some j > t.
- When adding $e(v_t)$ to the embedding, combine all previously possible embeddings with all possible values of $e(v_t)$, then remove all embeddings that violate any constraint involving v_t .



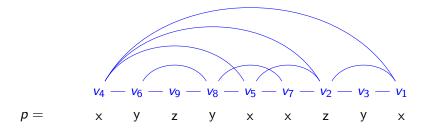
- Construct partial embeddings by adding the positions one-by-one in order σ = (v₁,..., v_m).
- At each time t, we compute all possible partial embeddings, but we only care about the the values e(v_i), where i ≤ t and (v_i, v_j) ∈ E for some j > t.
- When adding $e(v_t)$ to the embedding, combine all previously possible embeddings with all possible values of $e(v_t)$, then remove all embeddings that violate any constraint involving v_t .



- Construct partial embeddings by adding the positions one-by-one in order σ = (v₁,..., v_m).
- At each time t, we compute all possible partial embeddings, but we only care about the the values e(v_i), where i ≤ t and (v_i, v_j) ∈ E for some j > t.
- When adding $e(v_t)$ to the embedding, combine all previously possible embeddings with all possible values of $e(v_t)$, then remove all embeddings that violate any constraint involving v_t .



- Construct partial embeddings by adding the positions one-by-one in order σ = (v₁,..., v_m).
- At each time t, we compute all possible partial embeddings, but we only care about the the values e(v_i), where i ≤ t and (v_i, v_j) ∈ E for some j > t.
- When adding $e(v_t)$ to the embedding, combine all previously possible embeddings with all possible values of $e(v_t)$, then remove all embeddings that violate any constraint involving v_t .



- Construct partial embeddings by adding the positions one-by-one in order σ = (v₁,..., v_m).
- At each time t, we compute all possible partial embeddings, but we only care about the the values e(v_i), where i ≤ t and (v_i, v_j) ∈ E for some j > t.
- When adding $e(v_t)$ to the embedding, combine all previously possible embeddings with all possible values of $e(v_t)$, then remove all embeddings that violate any constraint involving v_t .

Definition (Vertex separation number)

Given a linear ordering $\sigma = (v_1, \ldots, v_n)$ of vertices in a graph, the vertex separation number of σ is the smallest number s such that, for each vertex v_i at most s vertices of v_1, \ldots, v_{i-1} have some v_j with $j \ge i$ as neighbour. The vertex separation number of a graph is the minimum vertex separation number over all linear orderings of the graph.

Definition (Vertex separation number)

Given a linear ordering $\sigma = (v_1, \ldots, v_n)$ of vertices in a graph, the vertex separation number of σ is the smallest number s such that, for each vertex v_i at most s vertices of v_1, \ldots, v_{i-1} have some v_j with $j \ge i$ as neighbour. The vertex separation number of a graph is the minimum vertex separation number over all linear orderings of the graph.

Theorem

If the vertex separation number of the constraint graph is bound by k, MATCH_{REG} and MATCH_{SLS} can be solved in $\mathcal{O}(m^2n^{k+1} + m^2n^2\log\log n)$ and $\mathcal{O}(m^2n^{k+1})$ time respectively.

Definition (Vertex separation number)

Given a linear ordering $\sigma = (v_1, \ldots, v_n)$ of vertices in a graph, the vertex separation number of σ is the smallest number s such that, for each vertex v_i at most s vertices of v_1, \ldots, v_{i-1} have some v_j with $j \ge i$ as neighbour. The vertex separation number of a graph is the minimum vertex separation number over all linear orderings of the graph.

Theorem

If the vertex separation number of the constraint graph is bound by k, MATCH_{REG} and MATCH_{SLS} can be solved in $\mathcal{O}(m^2n^{k+1} + m^2n^2\log\log n)$ and $\mathcal{O}(m^2n^{k+1})$ time respectively. Moreover, both variants are W[1]-hard (parameterized by the vertex separation number of the constraint graph).

Definition (Vertex separation number)

Given a linear ordering $\sigma = (v_1, \ldots, v_n)$ of vertices in a graph, the vertex separation number of σ is the smallest number s such that, for each vertex v_i at most s vertices of v_1, \ldots, v_{i-1} have some v_j with $j \ge i$ as neighbour. The vertex separation number of a graph is the minimum vertex separation number over all linear orderings of the graph.

Theorem

If the vertex separation number of the constraint graph is bound by k, MATCH_{REG} and MATCH_{SLS} can be solved in $\mathcal{O}(m^2n^{k+1} + m^2n^2\log\log n)$ and $\mathcal{O}(m^2n^{k+1})$ time respectively. Moreover, both variants are W[1]-hard (parameterized by the vertex separation number of the constraint graph).

The second part is witnessed by the k-CLIQUE reduction from earlier.

The Interval Structure of Constraints

For C = (i, j, L) define *interval*(C) = [i, j - 1].

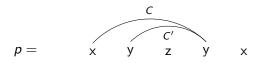
The Interval Structure of Constraints

For C = (i, j, L) define *interval*(C) = [i, j - 1]. Let C and C' be two constraints.

The Interval Structure of Constraints

For C = (i, j, L) define *interval*(C) = [i, j - 1]. Let C and C' be two constraints.

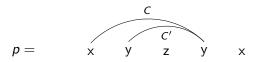
• C contains C' (or C' is contained in C) if $interval(C') \subsetneq interval(C)$



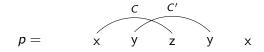
The Interval Structure of Constraints

For C = (i, j, L) define *interval*(C) = [i, j - 1]. Let C and C' be two constraints.

• C contains C' (or C' is contained in C) if $interval(C') \subsetneq interval(C)$



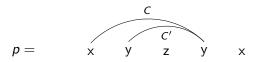
 C and C' intersect if interval(C) ∩ interval(C') is neither of interval(C), interval(C') or Ø.



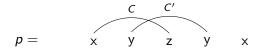
The Interval Structure of Constraints

For C = (i, j, L) define *interval*(C) = [i, j - 1]. Let C and C' be two constraints.

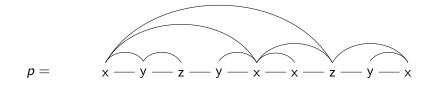
• C contains C' (or C' is contained in C) if $interval(C') \subsetneq interval(C)$

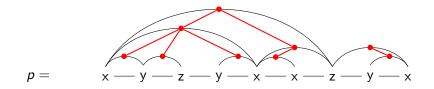


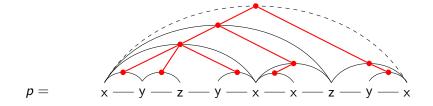
C and C' intersect if interval(C) ∩ interval(C') is neither of interval(C), interval(C') or Ø.

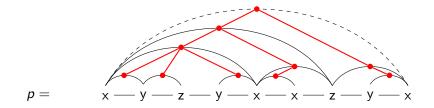


What about MATCH with pairwise non-intersecting constraints?

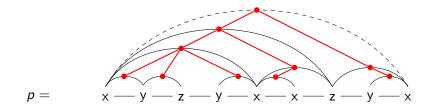








We can recursively construct the partial embeddings of p[i..j] for each constraint (i, j, L) bottom-up the tree.



We can recursively construct the partial embeddings of p[i..j] for each constraint (i, j, L) bottom-up the tree.

Theorem

If constraints are pairwise non-intersecting, $MATCH_{REG}$ and $MATCH_{SLS}$ can be solved in $\mathcal{O}(n^{\omega}k + n^2k \log \log n)$ and $\mathcal{O}(n^{\omega}k)$ time respectively, where $\mathcal{O}(n^{\omega})$ is the time needed to multiply two boolean matrices of size $n \times n$.

Definition (3-OV)

Given three sets $A = \{\vec{a}_1, \dots, \vec{a}_n\}, B = \{\vec{b}_1, \dots, \vec{b}_n\}, C = \{\vec{c}_1, \dots, \vec{c}_n\}$ of *d*-dimensional boolean vectors, are there indices $i, j, k \in [n]$, such that $\vec{a}_i \cdot \vec{b}_j \cdot \vec{c}_k = \vec{0}$?

Definition (3-OV)

Given three sets $A = \{\vec{a_1}, \dots, \vec{a_n}\}, B = \{\vec{b_1}, \dots, \vec{b_n}\}, C = \{\vec{c_1}, \dots, \vec{c_n}\}$ of *d*-dimensional boolean vectors, are there indices $i, j, k \in [n]$, such that $\vec{a_i} \cdot \vec{b_j} \cdot \vec{c_k} = \vec{0}$?

$$p = \overline{\mathsf{C}}_{p}(\vec{a}_{n}) \dots \overline{\mathsf{C}}_{p}(\vec{a}_{i}) \dots \overline{\mathsf{C}}_{p}(\vec{a}_{1}) \quad \S \quad \mathsf{C}_{p}(\vec{a}_{1}) \dots \mathsf{C}_{p}(\vec{a}_{i}) \dots \mathsf{C}_{p}(\vec{a}_{n})$$
$$w = w_{0} \ \overline{\mathsf{C}}_{w}(\vec{b}_{n}) \dots \overline{\mathsf{C}}_{w}(\vec{b}_{1}) \ w_{0} \qquad \S \qquad w_{0} \ \mathsf{C}_{w}(\vec{c}_{1}) \dots \mathsf{C}_{w}(\vec{c}_{n}) \ w_{0}$$

Definition (3-OV)

Given three sets $A = \{\vec{a_1}, \dots, \vec{a_n}\}, B = \{\vec{b_1}, \dots, \vec{b_n}\}, C = \{\vec{c_1}, \dots, \vec{c_n}\}$ of *d*-dimensional boolean vectors, are there indices $i, j, k \in [n]$, such that $\vec{a_i} \cdot \vec{b_j} \cdot \vec{c_k} = \vec{0}$?

$$p = \overline{C}_{p}(\vec{a}_{n}) \dots \overline{C}_{p}(\vec{a}_{i}) \dots \overline{C}_{p}(\vec{a}_{1}) \qquad \S \qquad C_{p}(\vec{a}_{1}) \dots C_{p}(\vec{a}_{i}) \dots C_{p}(\vec{a}_{n})$$

$$w = w_{0} \overline{C}_{w}(\vec{b}_{n}) \dots \overline{C}_{w}(\vec{b}_{1}) \qquad w_{0} \qquad \S \qquad w_{0} C_{w}(\vec{c}_{1}) \dots C_{w}(\vec{c}_{n}) \qquad w_{0}$$

Definition (3-OV)

Given three sets $A = \{\vec{a}_1, \dots, \vec{a}_n\}, B = \{\vec{b}_1, \dots, \vec{b}_n\}, C = \{\vec{c}_1, \dots, \vec{c}_n\}$ of *d*-dimensional boolean vectors, are there indices $i, j, k \in [n]$, such that $\vec{a}_i \cdot \vec{b}_j \cdot \vec{c}_k = \vec{0}$?

$$p = \overline{C}_{p}(\vec{a}_{n}) \dots \overline{C}_{p}(\vec{a}_{i}) \dots \overline{C}_{p}(\vec{a}_{1}) \qquad \S \qquad C_{p}(\vec{a}_{1}) \dots C_{p}(\vec{a}_{i}) \dots C_{p}(\vec{a}_{n})$$

$$w = w_{0} \overline{C}_{w}(\vec{b}_{n}) \dots \overline{C}_{w}(\vec{b}_{1}) \qquad w_{0} \qquad \S \qquad w_{0} C_{w}(\vec{c}_{1}) \dots C_{w}(\vec{c}_{n}) \qquad w_{0}$$

Theorem

Both variants of MATCH with pairwise non-intersecting constraints cannot be solved in $O(n^g k^h)$ time with g + h < 3, unless the Strong Exponential Time Hypothesis fails.

Thank you for your attention!

Summary:

- Problem: Matching subsequences with gap constraints
- Two types of constraints: regular and semilinear length constraints
- Polynomial solutions for constant amount of constraints
- Hardness of the problem parameterized by the length of the pattern, witnessed by reductions from *k*-CLIQUE and 1-in-3-3-SAT.
- Graph structure of Constraints: Relation between complexity of the problem and vertex separation number of constraint graph
- Interval structure of Constraints: Efficient solution for the case of non-intersecting constraints, lower bound via fine-grained reduction from 3-OV.

Do you have any questions?