Subsequences with Generalised Gap Constraints Upper and Lower Complexity Bounds

Florin Manea ¹ Jonas Richardsen ¹ Markus L. Schmid ²

 1 Computer Science Department and CIDAS, Universität Göttingen, Germany ²Humboldt-Universität zu Berlin, Germany

June 27, 2024

- A text w with $|w| = n$
- A pattern p with $|p| = m$

- A text w with $|w| = n$
- A pattern p with $|p| = m$

$$
p = \begin{array}{ccccccccc}\nx & y & z & y & x \\
w = & z & x & y & x & z & x & y & y & x\n\end{array}
$$

- A text w with $|w| = n$
- A pattern p with $|p| = m$

- A text w with $|w| = n$
- A pattern p with $|p| = m$

Given:

- A text w with $|w| = n$
- A pattern p with $|p| = m$

Notation: $p \preceq_e w$ with $e : [m] \to [n]$ (or just $p \preceq w$)

Given:

- A text w with $|w| = n$
- A pattern p with $|p| = m$

Notation: $p \preceq_e w$ with $e : [m] \to [n]$ (or just $p \preceq w$)

Properties of e:

• $e(1) < e(2) < \cdots < e(m)$ • $w[e(i)] = p[i]$

Definition

Given positions $i, j \in [m], i < j$, define

$$
\textnormal{\textsf{gap}}_{w,e}[i,j]:=w[e(i)+1..e(j)-1]
$$

as the gap between the embedding of the i -th and j -th character.

Definition

Given positions $i, j \in [m], i < j$, define

$$
\textnormal{\textsf{gap}}_{w,e}[i,j]:=w[e(i)+1..e(j)-1]
$$

as the gap between the embedding of the i -th and j -th character.

Definition

Given positions $i, j \in [m], i < j$, define

$$
\textnormal{\textsf{gap}}_{w,e}[i,j]:=w[e(i)+1..e(j)-1]
$$

as the gap between the embedding of the i -th and j -th character.

Definition

Given positions $i, j \in [m], i < j$, define

$$
\textnormal{\textsf{gap}}_{w,e}[i,j]:=w[e(i)+1..e(j)-1]
$$

as the gap between the embedding of the i -th and j -th character.

Definition

Given positions $i, j \in [m], i < j$, define

$$
\textnormal{\textsf{gap}}_{w,e}[i,j]:=w[e(i)+1..e(j)-1]
$$

as the gap between the embedding of the i -th and j -th character.

Definition

A gap constraint is defined as a triple $C = (i, j, L)$ with $i, j \in [m], i < j$ and $L \subseteq \Sigma^*$. An embedding e is said to satisfy the constraint if and only if

gap $_{w,e}[i,j] \in L$.

Definition

A gap constraint is defined as a triple $C = (i, j, L)$ with $i, j \in [m], i < j$ and $L \subseteq \Sigma^*$. An embedding e is said to satisfy the constraint if and only if

gap $_{w,e}[i,j] \in L$.

Types of Gap-Constraints:

Definition

A gap constraint is defined as a triple $C = (i, j, L)$ with $i, j \in [m], i < j$ and $L \subseteq \Sigma^*$. An embedding e is said to satisfy the constraint if and only if

gap $_{w,e}[i,j] \in L$.

Types of Gap-Constraints:

• regular constraint: $L \in \text{REG}$

Definition

A gap constraint is defined as a triple $C = (i, j, L)$ with $i, j \in [m], i < j$ and $L \subseteq \Sigma^*$. An embedding e is said to satisfy the constraint if and only if

gap $_{w,e}[i,j] \in L$.

Types of Gap-Constraints:

• regular constraint: $L \in \text{REG}$, size(C) = size(A) = $\mathcal{O}($ states(A)| Σ |) with A being a DFA accepting L

Definition

A gap constraint is defined as a triple $C = (i, j, L)$ with $i, j \in [m], i < j$ and $L \subseteq \Sigma^*$. An embedding e is said to satisfy the constraint if and only if

gap $_{w,e}[i,j] \in L$.

Types of Gap-Constraints:

- **•** regular constraint: $L \in \text{REG}$, size(C) = size(A) = $\mathcal{O}($ states(A)| Σ |) with A being a DFA accepting L
- semilinear length constraint: $L = \{ w \in \Sigma^* \mid |w| \in S \}$ with S a semilinear set

Definition

A gap constraint is defined as a triple $C = (i, j, L)$ with $i, j \in [m], i < j$ and $L \subseteq \Sigma^*$. An embedding e is said to satisfy the constraint if and only if

gap $_{w,e}[i,j] \in L$.

Types of Gap-Constraints:

- **•** regular constraint: $L \in \text{REG}$, size(C) = size(A) = $\mathcal{O}($ states(A)| Σ |) with A being a DFA accepting L
- semilinear length constraint: $L = \{ w \in \Sigma^* \mid |w| \in S \}$ with S a semilinear set, size (C) = size (S)

Semilinear sets

Definition

A subset $L \subset \mathbb{N}$ is called *linear*, if it is of the form

$$
L = L(x_0; x_1, \ldots, x_m) = \{x_0 + \sum_{i=1}^m k_i x_i \mid k_1, \ldots, k_m \in \mathbb{N}_0\}
$$

with $x_0 \in \mathbb{N}_0, x_1, \ldots, x_k \in \mathbb{N}$. A semilinear set is a finite union of linear sets.

Size of a (semi-)linear set:

- A linear set $L = L(x_0; x_1, \ldots, x_m)$ has size size(L) = $m + 1$.
- A semilinear set $L = \bigcup_{i=1}^k L_i$ with L_i linear sets has size size $(L) = \sum_{i=1}^{k}$ size (L_i) .

Input:

- A text w with $|w| = n$
- A pattern p with $|p| = m$
- A set of constraints $C = \{C_1, \ldots, C_k\}$

Input:

- A text w with $|w| = n$
- A pattern p with $|p| = m$
- A set of constraints $C = \{C_1, \ldots, C_k\},\$ g apsize $(\mathcal{C}) := \max_{C \in \mathcal{C}} (\text{size}(C))$

Input:

- A text w with $|w| = n$
- A pattern p with $|p| = m$
- A set of constraints $C = \{C_1, \ldots, C_k\},\$ g apsize $(\mathcal{C}) := \max_{C \in \mathcal{C}} (\text{size}(C))$

Question: Is p a C -subsequence of w

Input:

- A text w with $|w| = n$
- A pattern p with $|p| = m$
- A set of constraints $C = \{C_1, \ldots, C_k\}$, g apsize $(\mathcal{C}) := \max_{C \in \mathcal{C}} (\text{size}(C))$

Question: Is p a C-subsequence of w , i.e., is there an embedding $e: [m] \rightarrow [n]$ with

- $p \prec_{e} w$ and
- e satisfies C_ℓ for all $\ell \in [k]$?

Input:

- A text w with $|w| = n$
- A pattern p with $|p| = m$
- A set of constraints $C = \{C_1, \ldots, C_k\}$, g apsize $(\mathcal{C}) := \max_{C \in \mathcal{C}} (\text{size}(C))$

Question: Is p a C-subsequence of w , i.e., is there an embedding $e: [m] \rightarrow [n]$ with

- $p \prec_{e} w$ and
- e satisfies C_ℓ for all $\ell \in [k]$?

We use M ATCH_{REG} and M ATCH_{SLS} to denote the variants of the matching problem with regular and semilinear length constraints respectively.

Polynomial solutions for MATCH with constant $|\mathcal{C}|$

 $MATCH_{REG}: Construct an NFA to solve the problem:$

Theorem

MATCH_{REG} can be solved in polynomial time for constant $|\mathcal{C}|$ and is fixed parameter tractable for the combined parameter (|p|, gapsize(C)).

 $MATCH_{SI}$: Enumerate all possible partial embeddings of the positions that have a constraint, then "fill the gaps":

Theorem

MATCH_{SLS} can be solved in polynomial time for constant $|\mathcal{C}|$.

Hardness of MATCH_{SLS}

Definition (k-CLIQUE)

Given a graph $G = (V, E)$ with *n* vertices, decide whether there is a subset $K \subset V$ of k vertices that are pairwise adjacent.

Definition (k-CLIQUE)

Given a graph $G = (V, E)$ with *n* vertices, decide whether there is a subset $K \subset V$ of k vertices that are pairwise adjacent.

Alternative question: Is the $k \times k$ matrix containing only 1's a principal submatrix of the adjacency matrix A of G ?

Definition $(k$ -CLIQUE)

Given a graph $G = (V, E)$ with *n* vertices, decide whether there is a subset $K \subset V$ of k vertices that are pairwise adjacent.

Alternative question: Is the $k \times k$ matrix containing only 1's a principal submatrix of the adjacency matrix A of G ?

$$
A = \begin{pmatrix} 1 & 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 \end{pmatrix}
$$

Definition $(k$ -CLIQUE)

Given a graph $G = (V, E)$ with *n* vertices, decide whether there is a subset $K \subset V$ of k vertices that are pairwise adjacent.

Alternative question: Is the $k \times k$ matrix containing only 1's a principal submatrix of the adjacency matrix A of G?

$$
A = \begin{pmatrix} 1 & 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 \end{pmatrix}
$$

Definition $(k$ -CLIQUE)

Given a graph $G = (V, E)$ with *n* vertices, decide whether there is a subset $K \subset V$ of k vertices that are pairwise adjacent.

Alternative question: Is the $k \times k$ matrix containing only 1's a principal submatrix of the adjacency matrix A of G?

$$
A = \begin{pmatrix} 1 & 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 \end{pmatrix} \implies K = \{v_1, v_2, v_4, v_6\} \text{ is a 4-Clique}
$$

Hardness of MATCH_{SLS}

• Pattern
$$
p = 01^{k \cdot k}0
$$
, Text $w = 0a_{11} \ldots a_{nn}0$.

- Pattern $p = 01^{k \cdot k}0$, Text $w = 0a_{11} \ldots a_{nn}0$.
- Anchor: Enforce $e(1) = 1$ with the constraint $(1, k²+2, L(n²)).$

- Pattern $p = 01^{k \cdot k}0$, Text $w = 0a_{11} \ldots a_{nn}0$.
- Anchor: Enforce $e(1) = 1$ with the constraint $(1, k²+2, L(n²)).$
- Constrain the gap between the anchor and each element on the diagonal to be a multiple of $n+1$.

Hardness of $MATCH_{SLS}$

- Pattern $p = 01^{k \cdot k}0$, Text $w = 0a_{11} \ldots a_{nn}0$.
- Anchor: Enforce $e(1) = 1$ with the constraint $(1, k²+2, L(n²)).$
- **Constrain the gap between the anchor and each** element on the diagonal to be a multiple of $n + 1$.
- Constrain the gap between elements on subsequent rows and in the same column to be one smaller than a multiple of n.

Hardness of $MATCH_{SLS}$

- Pattern $p = 01^{k \cdot k}0$, Text $w = 0a_{11} \ldots a_{nn}0$.
- Anchor: Enforce $e(1) = 1$ with the constraint $(1, k²+2, L(n²)).$
- **Constrain the gap between the anchor and each** element on the diagonal to be a multiple of $n + 1$.
- Constrain the gap between elements on subsequent rows and in the same column to be one smaller than a multiple of n.
- Constrain the gap between the first and last element of each row to be smaller than $n-1$.

Hardness of $MATCH_{SLS}$

- Pattern $p = 01^{k \cdot k}0$, Text $w = 0a_{11} \ldots a_{nn}0$.
- Anchor: Enforce $e(1) = 1$ with the constraint $(1, k²+2, L(n²)).$
- Constrain the gap between the anchor and each element on the diagonal to be a multiple of $n + 1$.
- Constrain the gap between elements on subsequent rows and in the same column to be one smaller than a multiple of n.
- Constrain the gap between the first and last element of each row to be smaller than $n - 1$.

Theorem

MATCH_{SLS} parameterised by $|p|$ is W[1]-hard, even for constant gapsize(C) and binary alphabet Σ .

Hardness of $MATCH_{REG}$

Definition (1-in-3-3SAT)

Given a set of variables $A = \{x_1, \ldots, x_n\}$ and clauses $c_1, \ldots, c_m \subseteq A$ with $|c_j|=3$, find a subset $B\subseteq A$, such that $|c_i\cap B|=1$ for every $j\in[m].$

- Pattern $p = (b#)^n (b#)^m$
- Text $w = (bb#)^n (bbb#)^m$
- First part: decide $x_i \in B$ for $i \in [n]$.
- Second part: decide which of the 3 variables from c_j is in B for $j \in [m]$ (need some ordering on the variables).
- Use constraints to ensure that assignments are consistent.

Theorem

MATCHREG is NP-complete, even for binary alphabet Σ and with gap-constraints that can be represented by DFAs with at most 8 states.

- Construct partial embeddings by adding the positions one-by-one in order $\sigma = (v_1, \ldots, v_m)$.
- At each time t, we compute all possible partial embeddings, but we only care about the the values $e(\mathsf{v}_i)$, where $i\leq t$ and $(\mathsf{v}_i,\mathsf{v}_j)\in E$ for some $j > t$.
- When adding $e(v_t)$ to the embedding, combine all previously possible embeddings with all possible values of $e(v_t)$, then remove all embeddings that violate any constraint involving v_t .

- Construct partial embeddings by adding the positions one-by-one in order $\sigma = (v_1, \ldots, v_m)$.
- At each time t, we compute all possible partial embeddings, but we only care about the the values $e(\mathsf{v}_i)$, where $i\leq t$ and $(\mathsf{v}_i,\mathsf{v}_j)\in E$ for some $i > t$.
- When adding $e(v_t)$ to the embedding, combine all previously possible embeddings with all possible values of $e(v_t)$, then remove all embeddings that violate any constraint involving v_t .

- Construct partial embeddings by adding the positions one-by-one in order $\sigma = (v_1, \ldots, v_m)$.
- At each time t, we compute all possible partial embeddings, but we only care about the the values $e(\mathsf{v}_i)$, where $i\leq t$ and $(\mathsf{v}_i,\mathsf{v}_j)\in E$ for some $i > t$.
- When adding $e(v_t)$ to the embedding, combine all previously possible embeddings with all possible values of $e(v_t)$, then remove all embeddings that violate any constraint involving v_t .

- Construct partial embeddings by adding the positions one-by-one in order $\sigma = (v_1, \ldots, v_m)$.
- At each time t, we compute all possible partial embeddings, but we only care about the the values $e(\mathsf{v}_i)$, where $i\leq t$ and $(\mathsf{v}_i,\mathsf{v}_j)\in E$ for some $i > t$.
- When adding $e(v_t)$ to the embedding, combine all previously possible embeddings with all possible values of $e(v_t)$, then remove all embeddings that violate any constraint involving v_t .

- Construct partial embeddings by adding the positions one-by-one in order $\sigma = (v_1, \ldots, v_m)$.
- At each time t, we compute all possible partial embeddings, but we only care about the the values $e(\mathsf{v}_i)$, where $i\leq t$ and $(\mathsf{v}_i,\mathsf{v}_j)\in E$ for some $i > t$.
- When adding $e(v_t)$ to the embedding, combine all previously possible embeddings with all possible values of $e(v_t)$, then remove all embeddings that violate any constraint involving v_t .

- Construct partial embeddings by adding the positions one-by-one in order $\sigma = (v_1, \ldots, v_m)$.
- At each time t, we compute all possible partial embeddings, but we only care about the the values $e(\mathsf{v}_i)$, where $i\leq t$ and $(\mathsf{v}_i,\mathsf{v}_j)\in E$ for some $i > t$.
- When adding $e(v_t)$ to the embedding, combine all previously possible embeddings with all possible values of $e(v_t)$, then remove all embeddings that violate any constraint involving v_t .

- Construct partial embeddings by adding the positions one-by-one in order $\sigma = (v_1, \ldots, v_m)$.
- At each time t, we compute all possible partial embeddings, but we only care about the the values $e(\mathsf{v}_i)$, where $i\leq t$ and $(\mathsf{v}_i,\mathsf{v}_j)\in E$ for some $i > t$.
- When adding $e(v_t)$ to the embedding, combine all previously possible embeddings with all possible values of $e(v_t)$, then remove all embeddings that violate any constraint involving v_t .

- Construct partial embeddings by adding the positions one-by-one in order $\sigma = (v_1, \ldots, v_m)$.
- At each time t, we compute all possible partial embeddings, but we only care about the the values $e(\mathsf{v}_i)$, where $i\leq t$ and $(\mathsf{v}_i,\mathsf{v}_j)\in E$ for some $i > t$.
- When adding $e(v_t)$ to the embedding, combine all previously possible embeddings with all possible values of $e(v_t)$, then remove all embeddings that violate any constraint involving v_t .

- Construct partial embeddings by adding the positions one-by-one in order $\sigma = (v_1, \ldots, v_m)$.
- \bullet At each time t, we compute all possible partial embeddings, but we only care about the the values $e(\mathsf{v}_i)$, where $i\leq t$ and $(\mathsf{v}_i,\mathsf{v}_j)\in E$ for some $i > t$.
- When adding $e(v_t)$ to the embedding, combine all previously possible embeddings with all possible values of $e(v_t)$, then remove all embeddings that violate any constraint involving v_t .

- Construct partial embeddings by adding the positions one-by-one in order $\sigma = (v_1, \ldots, v_m)$.
- \bullet At each time t, we compute all possible partial embeddings, but we only care about the the values $e(\mathsf{v}_i)$, where $i\leq t$ and $(\mathsf{v}_i,\mathsf{v}_j)\in E$ for some $i > t$.
- When adding $e(v_t)$ to the embedding, combine all previously possible embeddings with all possible values of $e(v_t)$, then remove all embeddings that violate any constraint involving v_t .

- Construct partial embeddings by adding the positions one-by-one in order $\sigma = (v_1, \ldots, v_m)$.
- \bullet At each time t, we compute all possible partial embeddings, but we only care about the the values $e(\mathsf{v}_i)$, where $i\leq t$ and $(\mathsf{v}_i,\mathsf{v}_j)\in E$ for some $i > t$.
- When adding $e(v_t)$ to the embedding, combine all previously possible embeddings with all possible values of $e(v_t)$, then remove all embeddings that violate any constraint involving v_t .

- Construct partial embeddings by adding the positions one-by-one in order $\sigma = (v_1, \ldots, v_m)$.
- \bullet At each time t, we compute all possible partial embeddings, but we only care about the the values $e(\mathsf{v}_i)$, where $i\leq t$ and $(\mathsf{v}_i,\mathsf{v}_j)\in E$ for some $i > t$.
- When adding $e(v_t)$ to the embedding, combine all previously possible embeddings with all possible values of $e(v_t)$, then remove all embeddings that violate any constraint involving v_t .

- Construct partial embeddings by adding the positions one-by-one in order $\sigma = (v_1, \ldots, v_m)$.
- \bullet At each time t, we compute all possible partial embeddings, but we only care about the the values $e(\mathsf{v}_i)$, where $i\leq t$ and $(\mathsf{v}_i,\mathsf{v}_j)\in E$ for some $i > t$.
- When adding $e(v_t)$ to the embedding, combine all previously possible embeddings with all possible values of $e(v_t)$, then remove all embeddings that violate any constraint involving v_t .

- Construct partial embeddings by adding the positions one-by-one in order $\sigma = (v_1, \ldots, v_m)$.
- \bullet At each time t, we compute all possible partial embeddings, but we only care about the the values $e(\mathsf{v}_i)$, where $i\leq t$ and $(\mathsf{v}_i,\mathsf{v}_j)\in E$ for some $i > t$.
- When adding $e(v_t)$ to the embedding, combine all previously possible embeddings with all possible values of $e(v_t)$, then remove all embeddings that violate any constraint involving v_t .

- Construct partial embeddings by adding the positions one-by-one in order $\sigma = (v_1, \ldots, v_m)$.
- \bullet At each time t, we compute all possible partial embeddings, but we only care about the the values $e(\mathsf{v}_i)$, where $i\leq t$ and $(\mathsf{v}_i,\mathsf{v}_j)\in E$ for some $i > t$.
- When adding $e(v_t)$ to the embedding, combine all previously possible embeddings with all possible values of $e(v_t)$, then remove all embeddings that violate any constraint involving v_t .

- Construct partial embeddings by adding the positions one-by-one in order $\sigma = (v_1, \ldots, v_m)$.
- \bullet At each time t, we compute all possible partial embeddings, but we only care about the the values $e(\mathsf{v}_i)$, where $i\leq t$ and $(\mathsf{v}_i,\mathsf{v}_j)\in E$ for some $i > t$.
- When adding $e(v_t)$ to the embedding, combine all previously possible embeddings with all possible values of $e(v_t)$, then remove all embeddings that violate any constraint involving v_t .

- Construct partial embeddings by adding the positions one-by-one in order $\sigma = (v_1, \ldots, v_m)$.
- \bullet At each time t, we compute all possible partial embeddings, but we only care about the the values $e(\mathsf{v}_i)$, where $i\leq t$ and $(\mathsf{v}_i,\mathsf{v}_j)\in E$ for some $i > t$.
- When adding $e(v_t)$ to the embedding, combine all previously possible embeddings with all possible values of $e(v_t)$, then remove all embeddings that violate any constraint involving v_t .

- Construct partial embeddings by adding the positions one-by-one in order $\sigma = (v_1, \ldots, v_m)$.
- \bullet At each time t, we compute all possible partial embeddings, but we only care about the the values $e(\mathsf{v}_i)$, where $i\leq t$ and $(\mathsf{v}_i,\mathsf{v}_j)\in E$ for some $i > t$.
- When adding $e(v_t)$ to the embedding, combine all previously possible embeddings with all possible values of $e(v_t)$, then remove all embeddings that violate any constraint involving v_t .

- Construct partial embeddings by adding the positions one-by-one in order $\sigma = (v_1, \ldots, v_m)$.
- \bullet At each time t, we compute all possible partial embeddings, but we only care about the the values $e(\mathsf{v}_i)$, where $i\leq t$ and $(\mathsf{v}_i,\mathsf{v}_j)\in E$ for some $i > t$.
- When adding $e(v_t)$ to the embedding, combine all previously possible embeddings with all possible values of $e(v_t)$, then remove all embeddings that violate any constraint involving v_t .

- Construct partial embeddings by adding the positions one-by-one in order $\sigma = (v_1, \ldots, v_m)$.
- \bullet At each time t, we compute all possible partial embeddings, but we only care about the the values $e(\mathsf{v}_i)$, where $i\leq t$ and $(\mathsf{v}_i,\mathsf{v}_j)\in E$ for some $i > t$.
- When adding $e(v_t)$ to the embedding, combine all previously possible embeddings with all possible values of $e(v_t)$, then remove all embeddings that violate any constraint involving v_t .

- Construct partial embeddings by adding the positions one-by-one in order $\sigma = (v_1, \ldots, v_m)$.
- \bullet At each time t, we compute all possible partial embeddings, but we only care about the the values $e(\mathsf{v}_i)$, where $i\leq t$ and $(\mathsf{v}_i,\mathsf{v}_j)\in E$ for some $i > t$.
- When adding $e(v_t)$ to the embedding, combine all previously possible embeddings with all possible values of $e(v_t)$, then remove all embeddings that violate any constraint involving v_t .

- Construct partial embeddings by adding the positions one-by-one in order $\sigma = (v_1, \ldots, v_m)$.
- \bullet At each time t, we compute all possible partial embeddings, but we only care about the the values $e(\mathsf{v}_i)$, where $i\leq t$ and $(\mathsf{v}_i,\mathsf{v}_j)\in E$ for some $i > t$.
- When adding $e(v_t)$ to the embedding, combine all previously possible embeddings with all possible values of $e(v_t)$, then remove all embeddings that violate any constraint involving v_t .

- Construct partial embeddings by adding the positions one-by-one in order $\sigma = (v_1, \ldots, v_m)$.
- \bullet At each time t, we compute all possible partial embeddings, but we only care about the the values $e(\mathsf{v}_i)$, where $i\leq t$ and $(\mathsf{v}_i,\mathsf{v}_j)\in E$ for some $i > t$.
- When adding $e(v_t)$ to the embedding, combine all previously possible embeddings with all possible values of $e(v_t)$, then remove all embeddings that violate any constraint involving v_t .

- Construct partial embeddings by adding the positions one-by-one in order $\sigma = (v_1, \ldots, v_m)$.
- \bullet At each time t, we compute all possible partial embeddings, but we only care about the the values $e(\mathsf{v}_i)$, where $i\leq t$ and $(\mathsf{v}_i,\mathsf{v}_j)\in E$ for some $i > t$.
- When adding $e(v_t)$ to the embedding, combine all previously possible embeddings with all possible values of $e(v_t)$, then remove all embeddings that violate any constraint involving v_t .

Definition (Vertex separation number)

Given a linear ordering $\sigma = (v_1, \ldots, v_n)$ of vertices in a graph, the vertex separation number of σ is the smallest number s such that, for each vertex v_i at most s vertices of v_1, \ldots, v_{i-1} have some v_i with $j \geq i$ as neighbour. The vertex separation number of a graph is the minimum vertex separation number over all linear orderings of the graph.

Definition (Vertex separation number)

Given a linear ordering $\sigma = (v_1, \ldots, v_n)$ of vertices in a graph, the vertex separation number of σ is the smallest number s such that, for each vertex v_i at most s vertices of v_1, \ldots, v_{i-1} have some v_i with $j \geq i$ as neighbour. The vertex separation number of a graph is the minimum vertex separation number over all linear orderings of the graph.

Theorem

If the vertex separation number of the constraint graph is bound by k , $\text{MATCH}_{\text{REG}}$ and $\text{MATCH}_{\text{SLS}}$ can be solved in $\mathcal{O}(m^2n^{k+1}+m^2n^2\log\log n)$ and $\mathcal{O}(m^2n^{k+1})$ time respectively.

Definition (Vertex separation number)

Given a linear ordering $\sigma = (v_1, \ldots, v_n)$ of vertices in a graph, the vertex separation number of σ is the smallest number s such that, for each vertex v_i at most s vertices of v_1, \ldots, v_{i-1} have some v_i with $j \geq i$ as neighbour. The vertex separation number of a graph is the minimum vertex separation number over all linear orderings of the graph.

Theorem

If the vertex separation number of the constraint graph is bound by k, $\text{MATCH}_{\text{REG}}$ and $\text{MATCH}_{\text{SLS}}$ can be solved in $\mathcal{O}(m^2n^{k+1}+m^2n^2\log\log n)$ and $\mathcal{O}(m^2n^{k+1})$ time respectively. Moreover, both variants are W[1]-hard (parameterized by the vertex separation number of the constraint graph).

Definition (Vertex separation number)

Given a linear ordering $\sigma = (v_1, \ldots, v_n)$ of vertices in a graph, the vertex separation number of σ is the smallest number s such that, for each vertex v_i at most s vertices of v_1, \ldots, v_{i-1} have some v_i with $j \geq i$ as neighbour. The vertex separation number of a graph is the minimum vertex separation number over all linear orderings of the graph.

Theorem

If the vertex separation number of the constraint graph is bound by k, $\text{MATCH}_{\text{REG}}$ and $\text{MATCH}_{\text{SLS}}$ can be solved in $\mathcal{O}(m^2n^{k+1}+m^2n^2\log\log n)$ and $\mathcal{O}(m^2n^{k+1})$ time respectively. Moreover, both variants are W[1]-hard (parameterized by the vertex separation number of the constraint graph).

The second part is witnessed by the k -CLIQUE reduction from earlier.

The Interval Structure of Constraints

For $C = (i, j, L)$ define *interval*(C) = [$i, j - 1$].

The Interval Structure of Constraints

For $C = (i, j, L)$ define *interval*(C) = [$i, j - 1$]. Let C and C' be two constraints.
The Interval Structure of Constraints

For $C = (i, j, L)$ define *interval*(C) = $[i, j - 1]$. Let C and C' be two constraints.

C contains C' (or C' is contained in C) if interval(C') \subsetneq interval(C)

The Interval Structure of Constraints

For $C = (i, j, L)$ define *interval*(C) = $[i, j - 1]$. Let C and C' be two constraints.

C contains C' (or C' is contained in C) if interval(C') \subsetneq interval(C)

C and C' intersect if interval(C) \cap interval(C') is neither of $interval(C)$, interval (C') or \emptyset .

The Interval Structure of Constraints

For $C = (i, j, L)$ define *interval*(C) = $[i, j - 1]$. Let C and C' be two constraints.

C contains C' (or C' is contained in C) if interval(C') \subsetneq interval(C)

C and C' intersect if interval(C) \cap interval(C') is neither of $interval(C)$, interval (C') or \emptyset .

What about MATCH with pairwise non-intersecting constraints?

We can recursively construct the partial embeddings of $p[i..j]$ for each constraint (i, j, L) bottom-up the tree.

We can recursively construct the partial embeddings of $p[i..j]$ for each constraint (i, j, L) bottom-up the tree.

Theorem

If constraints are pairwise non-intersecting, $MATCH_{REG}$ and $MATCH_{SLS}$ can be solved in $\mathcal{O}(n^{\omega}k + n^2k\log\log n)$ and $\mathcal{O}(n^{\omega}k)$ time respectively, where $\mathcal{O}(n^{\omega})$ is the time needed to multiply two boolean matrices of size $n \times n$.

Definition (3-OV)

Given three sets $A=\{\vec a_1,\ldots,\vec a_n\}, B=\{\vec b_1,\ldots,\vec b_n\}, C=\{\vec c_1,\ldots,\vec c_n\}$ of d-dimensional boolean vectors, are there indices $i, j, k \in [n]$, such that $\vec{a}_i \cdot \vec{b}_j \cdot \vec{c}_k = \vec{0}$?

Definition (3-OV)

Given three sets $A=\{\vec a_1,\ldots,\vec a_n\}, B=\{\vec b_1,\ldots,\vec b_n\}, C=\{\vec c_1,\ldots,\vec c_n\}$ of d-dimensional boolean vectors, are there indices $i, j, k \in [n]$, such that $\vec{a}_i \cdot \vec{b}_j \cdot \vec{c}_k = \vec{0}$?

$$
p = \overline{C}_p(\vec{a}_n) \cdots \overline{C}_p(\vec{a}_i) \cdots \overline{C}_p(\vec{a}_1) \S C_p(\vec{a}_1) \cdots C_p(\vec{a}_i) \cdots C_p(\vec{a}_n)
$$

$$
w = w_0 \overline{C}_w(\vec{b}_n) \cdots \overline{C}_w(\vec{b}_1) w_0 \S w_0 C_w(\vec{c}_1) \cdots C_w(\vec{c}_n) w_0
$$

Definition (3-OV)

Given three sets $A=\{\vec a_1,\ldots,\vec a_n\}, B=\{\vec b_1,\ldots,\vec b_n\}, C=\{\vec c_1,\ldots,\vec c_n\}$ of d-dimensional boolean vectors, are there indices $i, j, k \in [n]$, such that $\vec{a}_i \cdot \vec{b}_j \cdot \vec{c}_k = \vec{0}$?

$$
p = \overline{C}_p(\vec{a}_n) \cdots \overline{C}_p(\vec{a}_i) \cdots \overline{C}_p(\vec{a}_1) \S C_p(\vec{a}_1) \cdots C_p(\vec{a}_i) \cdots C_p(\vec{a}_n)
$$

\n
$$
w = w_0 \overline{C}_w(\overline{\vec{b}_n}) \cdots \overline{C}_w(\vec{b}_1) w_0 \S w_0 C_w(\vec{c}_1) \cdots C_w(\vec{c}_n) w_0
$$

Definition (3-OV)

Given three sets $A=\{\vec a_1,\ldots,\vec a_n\}, B=\{\vec b_1,\ldots,\vec b_n\}, C=\{\vec c_1,\ldots,\vec c_n\}$ of d-dimensional boolean vectors, are there indices $i, j, k \in [n]$, such that $\vec{a}_i \cdot \vec{b}_j \cdot \vec{c}_k = \vec{0}$?

$$
p = \overline{C}_p(\vec{a}_n) \cdots \overline{C}_p(\vec{a}_i) \cdots \overline{C}_p(\vec{a}_1) \S C_p(\vec{a}_1) \cdots C_p(\vec{a}_i) \cdots C_p(\vec{a}_n)
$$

\n
$$
w = w_0 \overline{C}_w(\vec{b}_n) \cdots \overline{C}_w(\vec{b}_1) w_0 \S w_0 C_w(\vec{c}_1) \cdots C_w(\vec{c}_n) w_0
$$

Theorem

Both variants of MATCH with pairwise non-intersecting constraints cannot be solved in $\mathcal{O}(n^{\mathsf{g}} k^{\mathsf{h}})$ time with $\mathsf{g} + \mathsf{h} < 3$, unless the Strong Exponential Time Hypothesis fails.

Thank you for your attention!

Summary:

- Problem: Matching subsequences with gap constraints
- Two types of constraints: regular and semilinear length constraints
- Polynomial solutions for constant amount of constraints
- Hardness of the problem parameterized by the length of the pattern, witnessed by reductions from k -CLIQUE and 1-in-3-3-SAT.
- Graph structure of Constraints: Relation between complexity of the problem and vertex separation number of constraint graph
- Interval structure of Constraints: Efficient solution for the case of non-intersecting constraints, lower bound via fine-grained reduction from 3-OV.

Do you have any questions?