Exploiting New Properties of String
Net Frequency for Efficient Computation

Peaker Guo, Patrick Eades, Anthony Wirth, and Justin Zobel
The University of Melbourne
CPM 2024, Fukuoka

e |dentification of significant strings in a text is a key task in

many applications.

e |dentification of significant strings in a text is a key task in
many applications.

e Frequency as a significance measure?

e |dentification of significant strings in a text is a key task in
many applications.
e Frequency as a significance measure?

e “th” is the most frequent bigram in English ...

e |dentification of significant strings in a text is a key task in
many applications.
e Frequency as a significance measure?
e “th” is the most frequent bigram in English ...

e Net frequency (NF) mitigates this limitation of frequency:

e |dentification of significant strings in a text is a key task in
many applications.
e Frequency as a significance measure?
e “th” is the most frequent bigram in English ...
e Net frequency (NF) mitigates this limitation of frequency:

e the NF of “th” is zero in “the theoretical theme”.

Identification of significant strings in a text is a key task in

many applications.

Frequency as a significance measure?

e “th” is the most frequent bigram in English ...

Net frequency (NF) mitigates this limitation of frequency:

e the NF of “th” is zero in “the theoretical theme”.

NF was originally introduced for Chinese NLP tasks [LYO1].

e |dentification of significant strings in a text is a key task in
many applications.
e Frequency as a significance measure?
e “th” is the most frequent bigram in English ...
e Net frequency (NF) mitigates this limitation of frequency:

e the NF of “th” is zero in “the theoretical theme”.
e NF was originally introduced for Chinese NLP tasks [LYO1].

e There is a lack of understanding of the properties of NF and
the absence of efficient algorithms for computing NF.

Our Contribution

e Reconceptualise NF and simplify its original definition.

Our Contribution

e Reconceptualise NF and simplify its original definition.

e Identify strings with positive NF in a Fibonacci word.

Our Contribution

e Reconceptualise NF and simplify its original definition.
e Identify strings with positive NF in a Fibonacci word.

e Introduce and solve two problems: SINGLE-NF and ALL-NF.

Our Contribution

e Reconceptualise NF and simplify its original definition.

Identify strings with positive NF in a Fibonacci word.

Introduce and solve two problems: SINGLE-NF and ALL-NF.

Prove combinatorial bounds related to ALL-NF.

Our Redefinition of Net Frequency

Definition

The NF of a repeated string S in a text T, denoted as ¢7(S), is
the number of occurrences of S in T that have left and
right . Such an occurrence is referred to as a net
occurrence. The NF of a unique string is zero.

Our Redefinition of Net Frequency

Definition

The NF of a repeated string S in a text T, denoted as ¢7(S), is
the number of occurrences of S in T that have unique left and
right extensions. Such an occurrence is referred to as a net
occurrence. The NF of a unique string is zero.

For example, consider S = st and T = #rstkstcastarstast$.

Our Redefinition of Net Frequency

Definition

The NF of a repeated string S in a text T, denoted as ¢7(S5), is
the number of occurrences of S in T that have unique left and
right extensions. Such an occurrence is referred to as a net

occurrence. The NF of a unique string is zero.

#rstkstcastarstast$

Our Redefinition of Net Frequency

Definition

The NF of a repeated string S in a text T, denoted as ¢7(S5), is
the number of occurrences of S in T that have unique left and
right extensions. Such an occurrence is referred to as a net

occurrence. The NF of a unique string is zero.

#rstkstcastarstast$

Our Redefinition of Net Frequency

Definition

The NF of a repeated string S in a text T, denoted as ¢7(S5), is
the number of occurrences of S in T that have unique left and
right extensions. Such an occurrence is referred to as a net

occurrence. The NF of a unique string is zero.

Hr stcastarstast$

Our Redefinition of Net Frequency

Definition

The NF of a repeated string S in a text T, denoted as ¢7(S5), is
the number of occurrences of S in T that have unique left and
right extensions. Such an occurrence is referred to as a net

occurrence. The NF of a unique string is zero.

#rstkstcastarstast$

Our Redefinition of Net Frequency

Definition

The NF of a repeated string S in a text T, denoted as ¢7(S), is
the number of occurrences of S in T that have unique left and
right extensions. Such an occurrence is referred to as a net

occurrence. The NF of a unique string is zero.

#rstkstcastarstast$

Our Redefinition of Net Frequency

Definition

The NF of a repeated string S in a text T, denoted as ¢7(S), is
the number of occurrences of S in T that have unique left and
right extensions. Such an occurrence is referred to as a net

occurrence. The NF of a unique string is zero.

#rstkstcastarstast$

Our Redefinition of Net Frequency

Definition

The NF of a repeated string S in a text T, denoted as ¢7(S5), is
the number of occurrences of S in T that have unique left and
right extensions. Such an occurrence is referred to as a net

occurrence. The NF of a unique string is zero.

#rstkstcastarstast$

Our Redefinition of Net Frequency

Definition

The NF of a repeated string S in a text T, denoted as ¢7(S5), is
the number of occurrences of S in T that have unique left and
right extensions. Such an occurrence is referred to as a net

occurrence. The NF of a unique string is zero.

#rstkstcastarstast$

Our Redefinition of Net Frequency

Definition

The NF of a repeated string S in a text T, denoted as ¢7(S5), is
the number of occurrences of S in T that have unique left and
right extensions. Such an occurrence is referred to as a net

occurrence. The NF of a unique string is zero.

#rstkstcastarstast$

Net frequency in Fibonacci words: A Case Study

i & 5
1 1|b
2 1
3 2| ab
4 3| aba
5 5| abaab
6 8 | abaababa

Let f; be the it" Fibonacci number. Let F; be the ith Fibonacci
word, where F; :=b, F, := a, and F; := F;_1F;_» for each / > 3.
Note that f; := |Fj|.

Net frequency in Fibonacci words: A Case Study

i & 5
1 1|b
2 1
3 2| ab
4 3| aba
5 5| abaab
6 8 | abaababa

Let f; be the it" Fibonacci number. Let F; be the ith Fibonacci
word, where F; :=b,F, := a, and F; := F;_1F;_» for each i > 3.
Note that f; := |Fj|.

Net frequency in Fibonacci words: A Case Study

i & 5
1 1|b
2 1
3 2| ab
4 3| aba
5 5| abaab
6 8 | abaababa

Let f; be the it" Fibonacci number. Let F; be the ith Fibonacci
word, where F; :=b,F, := a, and F; := F;_1F;_» for each i > 3.
Note that f; := |Fj|.

Net frequency in Fibonacci words: A Case Study

i & 5
1 1|b
2 1
3 2| ab
4 3| aba
5 5| abaab
6 8 | abaababa

Let f; be the it" Fibonacci number. Let F; be the ith Fibonacci
word, where F; :=b,F, := a, and F; := F;_1F;_» for each i > 3.
Note that f; := |Fj|.

Net frequency in Fibonacci words: A Case Study

i & 5
1 1|b
2 1
3 2| ab
4 3| aba
5 5| abaab
6 8 | abaababa

Let f; be the it" Fibonacci number. Let F; be the ith Fibonacci
word, where F; :=b,F, := a, and F; := F;_1F;_» for each i > 3.
Note that f; := |Fj|.

Strings with Positive NF in F;

Empirically, only F;_5 and F;_1[1...fi_1 — 2] have positive NF in
F;, for each i > 7 until a reasonably large i.

Strings with Positive NF in F;

Empirically, only F;_5 and F;_1[1...fi_1 — 2] have positive NF in
F;, for each i > 7 until a reasonably large i.

i | F

5 abaab

6 8 | abaababa

7 13 | abaababaabaab

Strings with Positive NF in F;

Empirically, only F;_5 and F;_1[1...fi_1 — 2] have positive NF in
F;, for each i > 7 until a reasonably large i.

i | F

5 abaab

6 8 | abaababa

7 13 | abaababaabaab

Factorization of F;

We factorize F; in two different ways. Take Fg as an example.

FzQ F7,3 F
bbaababdbbaadbbaababd$

#abaababalabaababalablaba$
F;_o F;_o Fi_5 Fi_4

NF of F,_, in F;

5 %
FZQ TFZS TF
hbaababdﬁbaadbbaababd$

#abaababaabaababal@baba$
Et/Q F72 Fz 5FZ4

x = z: the first character of each F; is always ‘a’ for i > 2 .

NF of F,_, in F;

Y
FZQ FZST F
bbaabab@bbaaﬂbbaababd$

#abaababalabaababalababa$
Fi—2 Fi_2 Fi5 Fi4

y: the last character of consecutive Fibonacci words
alternates.

NF of F,_, in F;

Lemma

Only the last occurrence of F;_» is a net occurrence in F;.

Fi_o
#abaababaabaablabaababad$

#tabaababalabaababaababal
Fi_o Fi_o

The Near-Commutative Property [Pir97]

e F;is defined as F;_1 F;_5, but what if we reverse the order of
the concatenation?

e Fi_1 Fi_» and F;_» F;_1 only differ in the last two characters:

Fs F5 = abaababalabaab
Fs F¢ = abaab|abaababa

NF of F,'_]_[l 500 f;'_]_ — 2] = F,'_QQ,' in F,'

Fi 4 Fi s
F; o Q: Fi o
#abaababalabaablabaababa$
#abaababalabaababalablaba$
F; o Fi Qi
Fi 5| F;—4

Lemma
Fi_q Fi_s = Q; A (1 — (i mod 2)) and
F,'_5 F,'_4 = Q,’ A(i mod 2)

... where Q; := Fi_5 Fi_¢--- F3 F2, A(0) := ba, and A(1) := ab.

Strings with Posi

Theorem
For each i > 7, ¢r,(Fi—2) =1 and ¢Fr.(Fi—2» Q;) = 2.

Conjecture

There are only three net occurrences in F;.

Idea: a net occurrence may overlap with another net occurrence,
but cannot contain it entirely.

10

Net Frequency Computation

We consider the following computational problems:

e SINGLE-NF: process an input text; report the NF of a query
string in the input text.

11

Net Frequency Computation

We consider the following computational problems:

e SINGLE-NF: process an input text; report the NF of a query
string in the input text.

e ALL-NF: report an occurrence and the NF of each string of

positive NF in an input text.

11

Net Frequency Computation

We consider the following computational problems:

e SINGLE-NF: process an input text; report the NF of a query
string in the input text.
e ALL-NF: report an occurrence and the NF of each string of

positive NF in an input text. For example, the output of
ALL-NF on abaababaabaab is: ((1,6),2),((9,14),1).

11

SINGLE-NF Algorithm

Augment the suffix array (SA) with LCP array and LF mapping.

12

SINGLE-NF Algorithm

Augment the suffix array (SA) with LCP array and LF mapping.

Theorem

Let (I, r) be the SA interval of a string S. For each i € (I, r), let
0(i) :== max(LCP[i], LCP[i + 1]), then, (SA[i], SA[i] + |S| — 1) is
a net occurrence if |S| = £(i) > L(LF[i]).

12

SINGLE-NF Algorithm

Augment the suffix array (SA) with LCP array and LF mapping.

Theorem

Let (I, r) be the SA interval of a string S. For each i € (I, r), let
0(i) :== max(LCP[i], LCP[i + 1]), then, (SA[i], SA[i] + |S| — 1) is
a net occurrence if |S| = £(i) > L(LF[i]).

Proof idea: S is repeated if |S| < ¢(i) and is unique if |S| > ¢(i).

12

SINGLE-NF Algorithm (Example)

i | T[SA[i]...n) T[1...SA[]—1] LCP[i] (i) LFJi]
7 | kstcastarstast$#rst 0 0 19
8 | rstast$#rstkstcasta 0 3 3
9 | rstkstcastarstast$# 3 3 1
10 | st$#trstkstcastarsta 0 2 4
11 | starstast$#rstkstca 2 3 5
12 | stast$#rstkstcastar 3 3 8
13 | stcastarstast$#rstk 2 2 7
14 | stkstcastarstast$#r 2 2 9

Remainder: ¢(i) := max(LCP[i], LCP[i + 1])

13

SINGLE-NF Algorithm (Example)

The SA interval of “st”

i | T[SA[i]...n) T[1...SA[]—1] LCP[i] (i) LFIi]
7 | kstcastarstast$#rst 0 0 19
8 | rstast$#rstkstcasta 0 3 3
9 | rstkstcastarstast$# 3 3 1
10 | st$#rstkstcastarsta 0 2 4
11 | starstast$#rstkstca 2 3 5
12 | stast$#rstkstcastar 3 3 8
13 | stcastarstast$#rstk 2 2 7
14 | stkstcastarstast$#r 2 2 9

13

SINGLE-NF Algorithm (Example)

When i = 13, the right extension “stc” is unique:

i | TISA[]...n] T[1...SA[]]-1] LCP[i] (i) LFIi]
7 | kstcastarstast$#rst 0 0 19
8 | rstast$#rstkstcasta 0 3 3
9 | rstkstcastarstast$# 3 3 1
10 | st$#trstkstcastarsta 0 2 4
11 | starstast$#rstkstca 2 3 5
12 | stast$#rstkstcastar 3 3 8
13 | stcastarstast$#rstk 2 2 7
14 | stkstcastarstast$#r 2 2 9

Remainder: check for |S| 4+ 1 > £(i) where £(i) := max(LCP[i], LCP[i + 1])

13

SINGLE-NF Algorithm (Example)

The left extension “kst” is located using LF:

i | TISA[]...n] T[1...SA[]]-1] LCP[i] £(i) LFIi]
7 | kstcastarstast$#rst 0 0 19
8 | rstast$#rstkstcasta 0 3 3
9 | rstkstcastarstast$# 3 3 1
10 | st$#trstkstcastarsta 0 2 4
11 | starstast$#rstkstca 2 3 5)
12 | stast$#rstkstcastar 3 3 8
13 | stcastarstast$#rstk 2 2 7
14 | stkstcastarstast$#r 2 2 9

13

SINGLE-NF Algorithm (Example)

The left extension “kst” is unique:

i | TISA[]...n] T[1...SA[]]-1] LCP[i] (i) LFIi]
7 | kstcastarstast$#rst 0 0 19
8 | rstast$#rstkstcasta 0 3 3
9 | rstkstcastarstast$# 3 3 1
10 | st$#trstkstcastarsta 0 2 4
11 | starstast$#rstkstca 2 3 5
12 | stast$#rstkstcastar 3 3 8
13 | stcastarstast$#rstk 2 2 7
14 | stkstcastarstast$#r 2 2 9

Remainder: check for |S| 4+ 1 > £(LF[i]) where ¢(i) := max(LCPJi], LCP[i + 1])

13

Improved SINGLE-NF Algorithm

Lemma (Coloured range listing (CRL) [Mut02])
After processing a text T of length n in O(n) time, given a

i,...,J, the position of each distinct character (“ ") in
T[i...j] can be in O(1) time.

14

Improved SINGLE-NF Algorithm

Lemma (Coloured range listing (CRL) [Mut02])
After processing a text T of length n in O(n) time, given a

i,...,J, the position of each distinct character (") in
T[i...j] can be in O(1) time.

For example, when T = banana, CRL7(2,4) = {2, 3}.

14

Improved SINGLE-NF Algorithm

Lemma (Coloured range listing (CRL) [Mut02])
After processing a text T of length n in O(n) time, given a

i,...,J, the position of each distinct character (") in
T[i...j] can be in O(1) time.

For example, when T = banana, CRL7(3,6) = {3,4}.

14

Improved SINGLE-NF Algorithm

Lemma (Coloured range listing (CRL) [Mut02])
After processing a text T of length n in O(n) time, given a range

i,...,J, the position of each distinct character (“colour”) in
Tli...j] can be listed in O(1) time.

i | TISAL]...n) T[L...SA[i]—1]

10 | st$#rstkstcastarsta
11 | starstast$#rstkstca
12 | stast$#rstkstcastar CRLswr(10,14) = {10,12,13}
13 | stcastarstast$#rstk
14 | stkstcastarstast$#r

14

SINGLE-NF Result

Theorem

After processing a text T of length n in O(n) time, the NF of a
query string of length m can be computed in O(m + d) time
where d is the number of distinct left extension characters of S.

ii5)

Experimental Results

ASA (augmented SA) vs CRL (ASA & coloured range listing):
O(m + occ) vs O(m + d)

where m, occ, and d are the length, the number of occurrences and the

number of distinct left extension characters of the query string, respectively.

30 * ASA

20

10

ol
0 1000 2000 3000 4000 5000
Query string frequency

Average query time (in microsec)

16

ALL-NF-Related Bounds

Let A\ be the set of strings with positive NF in a text T; n=|T|.

17

ALL-NF-Related Bounds

Let A be the set of strings with positive NF in a text T; n=|T]|.

Lemma
>_sen®(S) < nand [A| < n.

17

ALL-NF-Related Bounds

Let A be the set of strings with positive NF in a text T; n=|T]|.

Lemma
>_sen®(S) < nand [A| < n.

17

ALL-NF-Related Bounds

Let A be the set of strings with positive NF in a text T; n=|T|.

Lemma
> sen?(S) < nand |A] < n.

Let M := 3 sealS] and L =3 scp &(S) - IS].
When T = abaababaabaab,

N\ = {abaaba, abaab}, M =6+5,and L=6 x 2+ 5 x 1.

17

ALL-NF-Related Bounds

Let A be the set of strings with positive NF in a text T; n=|T]|.

Lemma
>_sen®(S) < nand [A| < n.

Theorem
M € Q(n) and L € O(nlogd).

.. where 6 := max{S(k)/k : k € [n]}, S(k) is the # of distinct strings of length k.

Proof idea: sum of irreducible LCP values.

17

Conclusion and Future Work

Conclusion:

e Properties of NF:

e redefinition, Fibonacci words, bounds (more in the paper)
e O(m+ d)-time SINGLE-NF algorithm:

e extensive experiments (more results in the paper)
e O(n)-time ALL-NF algorithm

e two variants of ALL-NF (more details in the paper)

18

Conclusion and Future Work

Conclusion:

e Properties of NF:

e redefinition, Fibonacci words, bounds (more in the paper)
e O(m+ d)-time SINGLE-NF algorithm:

e extensive experiments (more results in the paper)
e O(n)-time ALL-NF algorithm

e two variants of ALL-NF (more details in the paper)

Future work:

e Only F,_» and F;_»Q; have positive NF in F;
Closing the gap of Q(n) < M < L < O(nlog)
A lower bound for SINGLE-NF

Online computation of NF

18

Acknowledgement

The authors thank:
e William Umboh, now one of my supervisors, for his insightful
discussions
e Anonymous reviewers for their valuable suggestions

e Hideo Bannai for bringing to our attention a paper on
Fibonacci words during the summer school last week

19

References

[LYO1]

[Mut02]

[Pir97]

Yih-Jeng Lin and Ming-Shing Yu. Extracting Chinese frequent strings
without dictionary from a Chinese corpus and its applications. Journal of
Information Science and Engineering, 17(5):805-824, 2001.

S. Muthukrishnan. Efficient algorithms for document retrieval problems. In
Proceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, January 6-8, 2002, San Francisco, CA, USA, pages 657-666.
ACM/SIAM, 2002.

Giuseppe Pirillo. Fibonacci numbers and words. Discrete Mathematics,
173(1-3):197-207, 1997.

20

Thank you for your time! Questions?

Full paper including code:

