
Exploiting New Properties of String

Net Frequency for Efficient Computation

Peaker Guo, Patrick Eades, Anthony Wirth, and Justin Zobel

The University of Melbourne

CPM 2024, Fukuoka

Motivation

• Identification of significant strings in a text is a key task in

many applications.

• Frequency as a significance measure?

• “th” is the most frequent bigram in English . . .

• Net frequency (NF) mitigates this limitation of frequency:

• the NF of “th” is zero in “the theoretical theme”.

• NF was originally introduced for Chinese NLP tasks [LY01].

• There is a lack of understanding of the properties of NF and

the absence of efficient algorithms for computing NF.

1

Motivation

• Identification of significant strings in a text is a key task in

many applications.

• Frequency as a significance measure?

• “th” is the most frequent bigram in English . . .

• Net frequency (NF) mitigates this limitation of frequency:

• the NF of “th” is zero in “the theoretical theme”.

• NF was originally introduced for Chinese NLP tasks [LY01].

• There is a lack of understanding of the properties of NF and

the absence of efficient algorithms for computing NF.

1

Motivation

• Identification of significant strings in a text is a key task in

many applications.

• Frequency as a significance measure?

• “th” is the most frequent bigram in English . . .

• Net frequency (NF) mitigates this limitation of frequency:

• the NF of “th” is zero in “the theoretical theme”.

• NF was originally introduced for Chinese NLP tasks [LY01].

• There is a lack of understanding of the properties of NF and

the absence of efficient algorithms for computing NF.

1

Motivation

• Identification of significant strings in a text is a key task in

many applications.

• Frequency as a significance measure?

• “th” is the most frequent bigram in English . . .

• Net frequency (NF) mitigates this limitation of frequency:

• the NF of “th” is zero in “the theoretical theme”.

• NF was originally introduced for Chinese NLP tasks [LY01].

• There is a lack of understanding of the properties of NF and

the absence of efficient algorithms for computing NF.

1

Motivation

• Identification of significant strings in a text is a key task in

many applications.

• Frequency as a significance measure?

• “th” is the most frequent bigram in English . . .

• Net frequency (NF) mitigates this limitation of frequency:

• the NF of “th” is zero in “the theoretical theme”.

• NF was originally introduced for Chinese NLP tasks [LY01].

• There is a lack of understanding of the properties of NF and

the absence of efficient algorithms for computing NF.

1

Motivation

• Identification of significant strings in a text is a key task in

many applications.

• Frequency as a significance measure?

• “th” is the most frequent bigram in English . . .

• Net frequency (NF) mitigates this limitation of frequency:

• the NF of “th” is zero in “the theoretical theme”.

• NF was originally introduced for Chinese NLP tasks [LY01].

• There is a lack of understanding of the properties of NF and

the absence of efficient algorithms for computing NF.

1

Motivation

• Identification of significant strings in a text is a key task in

many applications.

• Frequency as a significance measure?

• “th” is the most frequent bigram in English . . .

• Net frequency (NF) mitigates this limitation of frequency:

• the NF of “th” is zero in “the theoretical theme”.

• NF was originally introduced for Chinese NLP tasks [LY01].

• There is a lack of understanding of the properties of NF and

the absence of efficient algorithms for computing NF.

1

Our Contribution

• Reconceptualise NF and simplify its original definition.

• Identify strings with positive NF in a Fibonacci word.

• Introduce and solve two problems: single-nf and all-nf.

• Prove combinatorial bounds related to all-nf.

2

Our Contribution

• Reconceptualise NF and simplify its original definition.

• Identify strings with positive NF in a Fibonacci word.

• Introduce and solve two problems: single-nf and all-nf.

• Prove combinatorial bounds related to all-nf.

2

Our Contribution

• Reconceptualise NF and simplify its original definition.

• Identify strings with positive NF in a Fibonacci word.

• Introduce and solve two problems: single-nf and all-nf.

• Prove combinatorial bounds related to all-nf.

2

Our Contribution

• Reconceptualise NF and simplify its original definition.

• Identify strings with positive NF in a Fibonacci word.

• Introduce and solve two problems: single-nf and all-nf.

• Prove combinatorial bounds related to all-nf.

2

Our Redefinition of Net Frequency

Definition

The NF of a repeated string S in a text T , denoted as ϕT (S), is

the number of occurrences of S in T that have unique left and

right extensions. Such an occurrence is referred to as a net

occurrence. The NF of a unique string is zero.

3

Our Redefinition of Net Frequency

Definition

The NF of a repeated string S in a text T , denoted as ϕT (S), is

the number of occurrences of S in T that have unique left and

right extensions. Such an occurrence is referred to as a net

occurrence. The NF of a unique string is zero.

For example, consider S = st and T = #rstkstcastarstast$.

3

Our Redefinition of Net Frequency

Definition

The NF of a repeated string S in a text T , denoted as ϕT (S), is

the number of occurrences of S in T that have unique left and

right extensions. Such an occurrence is referred to as a net

occurrence. The NF of a unique string is zero.

#rstkstcastarstast$

3

Our Redefinition of Net Frequency

Definition

The NF of a repeated string S in a text T , denoted as ϕT (S), is

the number of occurrences of S in T that have unique left and

right extensions. Such an occurrence is referred to as a net

occurrence. The NF of a unique string is zero.

#rstkstcastarstast$

3

Our Redefinition of Net Frequency

Definition

The NF of a repeated string S in a text T , denoted as ϕT (S), is

the number of occurrences of S in T that have unique left and

right extensions. Such an occurrence is referred to as a net

occurrence. The NF of a unique string is zero.

#rstkstcastarstast$

3

Our Redefinition of Net Frequency

Definition

The NF of a repeated string S in a text T , denoted as ϕT (S), is

the number of occurrences of S in T that have unique left and

right extensions. Such an occurrence is referred to as a net

occurrence. The NF of a unique string is zero.

#rstkstcastarstast$

3

Our Redefinition of Net Frequency

Definition

The NF of a repeated string S in a text T , denoted as ϕT (S), is

the number of occurrences of S in T that have unique left and

right extensions. Such an occurrence is referred to as a net

occurrence. The NF of a unique string is zero.

#r���stkstcastar���stast$

3

Our Redefinition of Net Frequency

Definition

The NF of a repeated string S in a text T , denoted as ϕT (S), is

the number of occurrences of S in T that have unique left and

right extensions. Such an occurrence is referred to as a net

occurrence. The NF of a unique string is zero.

#r���stkstca���star���sta���st$

3

Our Redefinition of Net Frequency

Definition

The NF of a repeated string S in a text T , denoted as ϕT (S), is

the number of occurrences of S in T that have unique left and

right extensions. Such an occurrence is referred to as a net

occurrence. The NF of a unique string is zero.

#r���stkstca���star���sta���st$

3

Our Redefinition of Net Frequency

Definition

The NF of a repeated string S in a text T , denoted as ϕT (S), is

the number of occurrences of S in T that have unique left and

right extensions. Such an occurrence is referred to as a net

occurrence. The NF of a unique string is zero.

#r���stkstca���star���sta���st$

3

Our Redefinition of Net Frequency

Definition

The NF of a repeated string S in a text T , denoted as ϕT (S), is

the number of occurrences of S in T that have unique left and

right extensions. Such an occurrence is referred to as a net

occurrence. The NF of a unique string is zero.

#r���stkstca���star���sta���st$

3

Net frequency in Fibonacci words: A Case Study

i fi Fi

1 1 b

2 1 a

3 2 ab

4 3 aba

5 5 abaab

6 8 abaababa

Let fi be the i th Fibonacci number. Let Fi be the i th Fibonacci

word, where F1 := b,F2 := a, and Fi := Fi−1Fi−2 for each i ≥ 3.

Note that fi := |Fi |.

4

Net frequency in Fibonacci words: A Case Study

i fi Fi

1 1 b

2 1 a

3 2 ab

4 3 aba

5 5 abaab

6 8 abaababa

Let fi be the i th Fibonacci number. Let Fi be the i th Fibonacci

word, where F1 := b,F2 := a, and Fi := Fi−1Fi−2 for each i ≥ 3.

Note that fi := |Fi |.

4

Net frequency in Fibonacci words: A Case Study

i fi Fi

1 1 b

2 1 a

3 2 ab

4 3 aba

5 5 abaab

6 8 abaababa

Let fi be the i th Fibonacci number. Let Fi be the i th Fibonacci

word, where F1 := b,F2 := a, and Fi := Fi−1Fi−2 for each i ≥ 3.

Note that fi := |Fi |.

4

Net frequency in Fibonacci words: A Case Study

i fi Fi

1 1 b

2 1 a

3 2 ab

4 3 aba

5 5 abaab

6 8 abaababa

Let fi be the i th Fibonacci number. Let Fi be the i th Fibonacci

word, where F1 := b,F2 := a, and Fi := Fi−1Fi−2 for each i ≥ 3.

Note that fi := |Fi |.

4

Net frequency in Fibonacci words: A Case Study

i fi Fi

1 1 b

2 1 a

3 2 ab

4 3 aba

5 5 abaab

6 8 abaababa

Let fi be the i th Fibonacci number. Let Fi be the i th Fibonacci

word, where F1 := b,F2 := a, and Fi := Fi−1Fi−2 for each i ≥ 3.

Note that fi := |Fi |.

4

Strings with Positive NF in Fi

Empirically, only Fi−2 and Fi−1[1 . . . fi−1 − 2] have positive NF in

Fi , for each i ≥ 7 until a reasonably large i .

5

Strings with Positive NF in Fi

Empirically, only Fi−2 and Fi−1[1 . . . fi−1 − 2] have positive NF in

Fi , for each i ≥ 7 until a reasonably large i .

i fi Fi

5 5 abaab

6 8 abaababa

7 13 abaababaabaab

5

Strings with Positive NF in Fi

Empirically, only Fi−2 and Fi−1[1 . . . fi−1 − 2] have positive NF in

Fi , for each i ≥ 7 until a reasonably large i .

i fi Fi

5 5 abaab

6 8 abaababa

7 13 abaababaabaab

5

Factorization of Fi

We factorize Fi in two different ways. Take F8 as an example.

a b a a b a b a a b a a b a b a a b a b a

a b a a b a b a a b a a b a b a a b a b a
Fi−2

Fi−2 Fi−2

Fi−2Fi−3

Fi−5 Fi−4

$

$

#

#

6

NF of Fi−2 in Fi

a b a a b a b a a b a a b a b a a b a b a

a b a a b a b a a b a a b a b a a b a b a
Fi−2

Fi−2 Fi−2

Fi−2Fi−3

Fi−5 Fi−4

x z

#

#

$

$

x = z : the first character of each Fi is always ‘a’ for i ≥ 2 .

7

NF of Fi−2 in Fi

a b a a b a b a a b a a b a b a a b a b a

a b a a b a b a a b a a b a b a a b a b a
Fi−2

Fi−2 Fi−2

Fi−2Fi−3

w

Fi−5 Fi−4

y

#

#

$

$

w ̸= y : the last character of consecutive Fibonacci words

alternates.

7

NF of Fi−2 in Fi

Lemma

Only the last occurrence of Fi−2 is a net occurrence in Fi .

a b a a b a b a a b a a b a b a a b a b a

a b a a b a b a a b a a b a b a a b a b a

Fi−2 Fi−2

Fi−2

#

#

$

$

7

The Near-Commutative Property [Pir97]

• Fi is defined as Fi−1 Fi−2, but what if we reverse the order of

the concatenation?

• Fi−1 Fi−2 and Fi−2 Fi−1 only differ in the last two characters:

F6 F5 = abaababa|abaab

F5 F6 = abaab|abaababa

8

NF of Fi−1[1 . . . fi−1 − 2] = Fi−2Qi in Fi

a b a a b a b a a b a a b a b a a b a b a

a b a a b a b a a b a a b a b a a b a b a

Fi−2

Fi−2 Fi−2

Fi−2Qi

Qi

∆(1)

Fi−5 Fi−4

∆(0)

$

$

#

#

Fi−4 Fi−5

Lemma

Fi−4 Fi−5 = Qi ∆(1− (i mod 2)) and

Fi−5 Fi−4 = Qi ∆(i mod 2)

. . . where Qi := Fi−5 Fi−6 · · ·F3 F2, ∆(0) := ba, and ∆(1) := ab.

9

Strings with Positive NF in Fi

Theorem

For each i ≥ 7, ϕFi
(Fi−2) = 1 and ϕFi

(Fi−2 Qi) = 2.

Conjecture

There are only three net occurrences in Fi .

Idea: a net occurrence may overlap with another net occurrence,

but cannot contain it entirely.

10

Net Frequency Computation

We consider the following computational problems:

• single-nf: process an input text; report the NF of a query

string in the input text.

• all-nf: report an occurrence and the NF of each string of

positive NF in an input text.

For example, the output of

all-nf on abaababaabaab is: ((1, 6), 2), ((9, 14), 1).

11

Net Frequency Computation

We consider the following computational problems:

• single-nf: process an input text; report the NF of a query

string in the input text.

• all-nf: report an occurrence and the NF of each string of

positive NF in an input text.

For example, the output of

all-nf on abaababaabaab is: ((1, 6), 2), ((9, 14), 1).

11

Net Frequency Computation

We consider the following computational problems:

• single-nf: process an input text; report the NF of a query

string in the input text.

• all-nf: report an occurrence and the NF of each string of

positive NF in an input text. For example, the output of

all-nf on abaababaabaab is: ((1, 6), 2), ((9, 14), 1).

11

SINGLE-NF Algorithm

Augment the suffix array (SA) with LCP array and LF mapping.

Theorem

Let ⟨l , r⟩ be the SA interval of a string S. For each i ∈ ⟨l , r⟩, let
ℓ(i) := max(LCP[i], LCP[i + 1]), then, (SA[i],SA[i] + |S | − 1) is

a net occurrence if |S | = ℓ(i) ≥ ℓ(LF [i]).

Proof idea: S is repeated if |S | ≤ ℓ(i) and is unique if |S | > ℓ(i).

12

SINGLE-NF Algorithm

Augment the suffix array (SA) with LCP array and LF mapping.

Theorem

Let ⟨l , r⟩ be the SA interval of a string S. For each i ∈ ⟨l , r⟩, let
ℓ(i) := max(LCP[i], LCP[i + 1]), then, (SA[i],SA[i] + |S | − 1) is

a net occurrence if |S | = ℓ(i) ≥ ℓ(LF [i]).

Proof idea: S is repeated if |S | ≤ ℓ(i) and is unique if |S | > ℓ(i).

12

SINGLE-NF Algorithm

Augment the suffix array (SA) with LCP array and LF mapping.

Theorem

Let ⟨l , r⟩ be the SA interval of a string S. For each i ∈ ⟨l , r⟩, let
ℓ(i) := max(LCP[i], LCP[i + 1]), then, (SA[i],SA[i] + |S | − 1) is

a net occurrence if |S | = ℓ(i) ≥ ℓ(LF [i]).

Proof idea: S is repeated if |S | ≤ ℓ(i) and is unique if |S | > ℓ(i).

12

SINGLE-NF Algorithm (Example)

i T [SA[i]...n]T [1...SA[i]−1] LCP[i] ℓ(i) LF [i]

· · ·
7 kstcastarstast$#rst 0 0 19

8 rstast$#rstkstcasta 0 3 3

9 rstkstcastarstast$# 3 3 1

10 st$#rstkstcastarsta 0 2 4

11 starstast$#rstkstca 2 3 5

12 stast$#rstkstcastar 3 3 8

13 stcastarstast$#rstk 2 2 7

14 stkstcastarstast$#r 2 2 9

· · ·

Remainder: ℓ(i) := max(LCP[i], LCP[i + 1])

13

SINGLE-NF Algorithm (Example)

The SA interval of “st”

i T [SA[i]...n]T [1...SA[i]−1] LCP[i] ℓ(i) LF [i]

· · ·
7 kstcastarstast$#rst 0 0 19

8 rstast$#rstkstcasta 0 3 3

9 rstkstcastarstast$# 3 3 1

10 st$#rstkstcastarsta 0 2 4

11 starstast$#rstkstca 2 3 5

12 stast$#rstkstcastar 3 3 8

13 stcastarstast$#rstk 2 2 7

14 stkstcastarstast$#r 2 2 9

· · ·

13

SINGLE-NF Algorithm (Example)

When i = 13, the right extension “stc” is unique:

i T [SA[i]...n]T [1...SA[i]−1] LCP[i] ℓ(i) LF [i]

· · ·
7 kstcastarstast$#rst 0 0 19

8 rstast$#rstkstcasta 0 3 3

9 rstkstcastarstast$# 3 3 1

10 st$#rstkstcastarsta 0 2 4

11 starstast$#rstkstca 2 3 5

12 stast$#rstkstcastar 3 3 8

13 stcastarstast$#rstk 2 2 7

14 stkstcastarstast$#r 2 2 9

· · ·

Remainder: check for |S |+ 1 > ℓ(i) where ℓ(i) := max(LCP[i], LCP[i + 1])

13

SINGLE-NF Algorithm (Example)

The left extension “kst” is located using LF:

i T [SA[i]...n]T [1...SA[i]−1] LCP[i] ℓ(i) LF [i]

· · ·
7 kstcastarstast$#rst 0 0 19

8 rstast$#rstkstcasta 0 3 3

9 rstkstcastarstast$# 3 3 1

10 st$#rstkstcastarsta 0 2 4

11 starstast$#rstkstca 2 3 5

12 stast$#rstkstcastar 3 3 8

13 stcastarstast$#rstk 2 2 7

14 stkstcastarstast$#r 2 2 9

· · ·

13

SINGLE-NF Algorithm (Example)

The left extension “kst” is unique:

i T [SA[i]...n]T [1...SA[i]−1] LCP[i] ℓ(i) LF [i]

· · ·
7 kstcastarstast$#rst 0 0 19

8 rstast$#rstkstcasta 0 3 3

9 rstkstcastarstast$# 3 3 1

10 st$#rstkstcastarsta 0 2 4

11 starstast$#rstkstca 2 3 5

12 stast$#rstkstcastar 3 3 8

13 stcastarstast$#rstk 2 2 7

14 stkstcastarstast$#r 2 2 9

· · ·

Remainder: check for |S |+ 1 > ℓ(LF [i]) where ℓ(i) := max(LCP[i], LCP[i + 1])

13

Improved SINGLE-NF Algorithm

Lemma (Coloured range listing (CRL) [Mut02])

After processing a text T of length n in O(n) time, given a range

i , . . . , j , the position of each distinct character (“colour”) in

T [i . . . j] can be listed in O(1) time.

14

Improved SINGLE-NF Algorithm

Lemma (Coloured range listing (CRL) [Mut02])

After processing a text T of length n in O(n) time, given a range

i , . . . , j , the position of each distinct character (“colour”) in

T [i . . . j] can be listed in O(1) time.

For example, when T = banana, CRLT (2, 4) = {2, 3}.

14

Improved SINGLE-NF Algorithm

Lemma (Coloured range listing (CRL) [Mut02])

After processing a text T of length n in O(n) time, given a range

i , . . . , j , the position of each distinct character (“colour”) in

T [i . . . j] can be listed in O(1) time.

For example, when T = banana, CRLT (3, 6) = {3, 4}.

14

Improved SINGLE-NF Algorithm

Lemma (Coloured range listing (CRL) [Mut02])

After processing a text T of length n in O(n) time, given a range

i , . . . , j , the position of each distinct character (“colour”) in

T [i . . . j] can be listed in O(1) time.

i T [SA[i]...n]T [1...SA[i]−1]

· · ·
10 st$#rstkstcastarsta
11 starstast$#rstkstca
12 stast$#rstkstcastar
13 stcastarstast$#rstk
14 stkstcastarstast$#r
· · ·

CRLBWT (10, 14) = {10, 12, 13}

14

SINGLE-NF Result

Theorem

After processing a text T of length n in O(n) time, the NF of a

query string of length m can be computed in O(m + d) time

where d is the number of distinct left extension characters of S.

15

Experimental Results

ASA (augmented SA) vs CRL (ASA & coloured range listing):

O(m + occ) vs O(m + d)

where m, occ, and d are the length, the number of occurrences and the

number of distinct left extension characters of the query string, respectively.

0 1000 2000 3000 4000 5000
Query string frequency

0

10

20

30

Av
er

ag
e

qu
er

y
ti

m
e

(i
n

m
ic

ro
se

c)

ASA
CRL

16

ALL-NF-Related Bounds

Let Λ be the set of strings with positive NF in a text T ; n = |T |.

Lemma∑
S∈Λ ϕ(S) ≤ n and |Λ| ≤ n.

Let M :=
∑

S∈Λ |S | and L :=
∑

S∈Λ ϕ(S) · |S |.

Theorem

M ∈ Ω(n) and L ∈ O(n log δ).

. . . where δ := max {S(k)/k : k ∈ [n]}, S(k) is the # of distinct strings of length k.

Proof idea: sum of irreducible LCP values.

17

ALL-NF-Related Bounds

Let Λ be the set of strings with positive NF in a text T ; n = |T |.

Lemma∑
S∈Λ ϕ(S) ≤ n and |Λ| ≤ n.

Let M :=
∑

S∈Λ |S | and L :=
∑

S∈Λ ϕ(S) · |S |.

Theorem

M ∈ Ω(n) and L ∈ O(n log δ).

. . . where δ := max {S(k)/k : k ∈ [n]}, S(k) is the # of distinct strings of length k.

Proof idea: sum of irreducible LCP values.

17

ALL-NF-Related Bounds

Let Λ be the set of strings with positive NF in a text T ; n = |T |.

Lemma∑
S∈Λ ϕ(S) ≤ n and |Λ| ≤ n.

Let M :=
∑

S∈Λ |S | and L :=
∑

S∈Λ ϕ(S) · |S |.

Theorem

M ∈ Ω(n) and L ∈ O(n log δ).

. . . where δ := max {S(k)/k : k ∈ [n]}, S(k) is the # of distinct strings of length k.

Proof idea: sum of irreducible LCP values.

17

ALL-NF-Related Bounds

Let Λ be the set of strings with positive NF in a text T ; n = |T |.

Lemma∑
S∈Λ ϕ(S) ≤ n and |Λ| ≤ n.

Let M :=
∑

S∈Λ |S | and L :=
∑

S∈Λ ϕ(S) · |S |.

When T = abaababaabaab,

Λ = {abaaba, abaab}, M = 6 + 5, and L = 6× 2 + 5× 1.

Theorem

M ∈ Ω(n) and L ∈ O(n log δ).

. . . where δ := max {S(k)/k : k ∈ [n]}, S(k) is the # of distinct strings of length k.

Proof idea: sum of irreducible LCP values.

17

ALL-NF-Related Bounds

Let Λ be the set of strings with positive NF in a text T ; n = |T |.

Lemma∑
S∈Λ ϕ(S) ≤ n and |Λ| ≤ n.

Let M :=
∑

S∈Λ |S | and L :=
∑

S∈Λ ϕ(S) · |S |.

Theorem

M ∈ Ω(n) and L ∈ O(n log δ).

. . . where δ := max {S(k)/k : k ∈ [n]}, S(k) is the # of distinct strings of length k.

Proof idea: sum of irreducible LCP values.

17

Conclusion and Future Work

Conclusion:

• Properties of NF:

• redefinition, Fibonacci words, bounds (more in the paper)

• O(m + d)-time single-nf algorithm:

• extensive experiments (more results in the paper)

• O(n)-time all-nf algorithm

• two variants of all-nf (more details in the paper)

Future work:

• Only Fi−2 and Fi−2Qi have positive NF in Fi

• Closing the gap of Ω(n) ≤ M ≤ L ≤ O(n log δ)

• A lower bound for single-nf

• Online computation of NF

18

Conclusion and Future Work

Conclusion:

• Properties of NF:

• redefinition, Fibonacci words, bounds (more in the paper)

• O(m + d)-time single-nf algorithm:

• extensive experiments (more results in the paper)

• O(n)-time all-nf algorithm

• two variants of all-nf (more details in the paper)

Future work:

• Only Fi−2 and Fi−2Qi have positive NF in Fi

• Closing the gap of Ω(n) ≤ M ≤ L ≤ O(n log δ)

• A lower bound for single-nf

• Online computation of NF

18

Acknowledgement

The authors thank:

• William Umboh, now one of my supervisors, for his insightful

discussions

• Anonymous reviewers for their valuable suggestions

• Hideo Bannai for bringing to our attention a paper on

Fibonacci words during the summer school last week

19

References

[LY01] Yih-Jeng Lin and Ming-Shing Yu. Extracting Chinese frequent strings

without dictionary from a Chinese corpus and its applications. Journal of

Information Science and Engineering, 17(5):805–824, 2001.

[Mut02] S. Muthukrishnan. Efficient algorithms for document retrieval problems. In

Proceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete

Algorithms, January 6-8, 2002, San Francisco, CA, USA, pages 657–666.

ACM/SIAM, 2002.

[Pir97] Giuseppe Pirillo. Fibonacci numbers and words. Discrete Mathematics,

173(1-3):197–207, 1997.

20

Thank you for your time! Questions?

Full paper including code:

20

