Exploiting New Properties of String Net Frequency for Efficient Computation

Peaker Guo, Patrick Eades, Anthony Wirth, and Justin Zobel The University of Melbourne CPM 2024, Fukuoka • Identification of significant strings in a text is a key task in many applications.

- Identification of significant strings in a text is a key task in many applications.
- Frequency as a significance measure?

- Identification of significant strings in a text is a key task in many applications.
- Frequency as a significance measure?
 - "th" is the most frequent bigram in English

- Identification of significant strings in a text is a key task in many applications.
- Frequency as a significance measure?
 - "th" is the most frequent bigram in English
- Net frequency (NF) mitigates this limitation of frequency:

Motivation

- Identification of significant strings in a text is a key task in many applications.
- Frequency as a significance measure?
 - "th" is the most frequent bigram in English
- Net frequency (NF) mitigates this limitation of frequency:
 - the NF of "th" is zero in "the theoretical theme".

Motivation

- Identification of significant strings in a text is a key task in many applications.
- Frequency as a significance measure?
 - "th" is the most frequent bigram in English
- Net frequency (NF) mitigates this limitation of frequency:
 - the NF of "th" is zero in "the theoretical theme".
- NF was originally introduced for Chinese NLP tasks [LY01].

- Identification of significant strings in a text is a key task in many applications.
- Frequency as a significance measure?
 - "th" is the most frequent bigram in English
- Net frequency (NF) mitigates this limitation of frequency:
 - the NF of "th" is zero in "the theoretical theme".
- NF was originally introduced for Chinese NLP tasks [LY01].
- There is a lack of understanding of the properties of NF and the absence of efficient algorithms for computing NF.

• Reconceptualise NF and simplify its original definition.

- Reconceptualise NF and simplify its original definition.
- Identify strings with positive NF in a Fibonacci word.

- Reconceptualise NF and simplify its original definition.
- Identify strings with positive NF in a Fibonacci word.
- Introduce and solve two problems: SINGLE-NF and ALL-NF.

- Reconceptualise NF and simplify its original definition.
- Identify strings with positive NF in a Fibonacci word.
- Introduce and solve two problems: SINGLE-NF and ALL-NF.
- Prove combinatorial bounds related to ALL-NF.

The NF of a repeated string S in a text T, denoted as $\phi_T(S)$, is the number of occurrences of S in T that have unique left and right extensions. Such an occurrence is referred to as a *net occurrence*. The NF of a unique string is zero.

The NF of a repeated string S in a text T, denoted as $\phi_T(S)$, is the number of occurrences of S in T that have unique left and right extensions. Such an occurrence is referred to as a *net occurrence*. The NF of a unique string is zero.

For example, consider S = st and T = #rstkstcastarstast.

The NF of a repeated string S in a text T, denoted as $\phi_T(S)$, is the number of occurrences of S in T that have unique left and right extensions. Such an occurrence is referred to as a *net occurrence*. The NF of a unique string is zero.

The NF of a repeated string S in a text T, denoted as $\phi_T(S)$, is the number of occurrences of S in T that have unique left and right extensions. Such an occurrence is referred to as a *net occurrence*. The NF of a unique string is zero.

The NF of a repeated string S in a text T, denoted as $\phi_T(S)$, is the number of occurrences of S in T that have unique left and right extensions. Such an occurrence is referred to as a *net occurrence*. The NF of a unique string is zero.

The NF of a repeated string S in a text T, denoted as $\phi_T(S)$, is the number of occurrences of S in T that have unique left and right extensions. Such an occurrence is referred to as a *net occurrence*. The NF of a unique string is zero.

The NF of a repeated string S in a text T, denoted as $\phi_T(S)$, is the number of occurrences of S in T that have unique left and right extensions. Such an occurrence is referred to as a *net occurrence*. The NF of a unique string is zero.

#rstkstcasta<mark>rst</mark>ast\$

The NF of a repeated string S in a text T, denoted as $\phi_T(S)$, is the number of occurrences of S in T that have unique left and right extensions. Such an occurrence is referred to as a *net occurrence*. The NF of a unique string is zero.

The NF of a repeated string S in a text T, denoted as $\phi_T(S)$, is the number of occurrences of S in T that have unique left and right extensions. Such an occurrence is referred to as a *net occurrence*. The NF of a unique string is zero.

The NF of a repeated string S in a text T, denoted as $\phi_T(S)$, is the number of occurrences of S in T that have unique left and right extensions. Such an occurrence is referred to as a *net occurrence*. The NF of a unique string is zero.

The NF of a repeated string S in a text T, denoted as $\phi_T(S)$, is the number of occurrences of S in T that have unique left and right extensions. Such an occurrence is referred to as a *net occurrence*. The NF of a unique string is zero.

i	f _i	F _i
1	1	Ъ
2	1	a
3	2	ab
4	3	aba
5	5	abaab
6	8	abaababa

i	f _i	F _i
1	1	Ъ
2	1	a
3	2	ab
4	3	aba
5	5	abaab
6	8	abaababa

i	f _i	F _i
1	1	Ъ
2	1	a
3	2	ab
4	3	ab <mark>a</mark>
5	5	abaab
6	8	abaababa

i	f _i	F _i
1	1	Ъ
2	1	a
3	2	ab
4	3	aba
5	5	aba <mark>ab</mark>
6	8	abaababa

i	f _i	F _i
1	1	Ъ
2	1	a
3	2	ab
4	3	aba
5	5	abaab
6	8	abaab <mark>aba</mark>

Empirically, only F_{i-2} and $F_{i-1}[1 \dots f_{i-1} - 2]$ have positive NF in F_i , for each $i \ge 7$ until a reasonably large *i*.

Empirically, only F_{i-2} and $F_{i-1}[1 \dots f_{i-1} - 2]$ have positive NF in F_i , for each $i \ge 7$ until a reasonably large *i*.

i	fi	F _i
5	5	abaab
6	8	abaababa
7	13	abaababa <u>abaab</u>

Empirically, only F_{i-2} and $F_{i-1}[1 \dots f_{i-1} - 2]$ have positive NF in F_i , for each $i \ge 7$ until a reasonably large *i*.

i	fi	F _i
5	5	abaab
6	8	abaababa
7	13	<u>abaaba</u> baabaab

We factorize F_i in two different ways. Take F_8 as an example.

x = z: the first character of each F_i is always 'a' for $i \ge 2$.

 $w \neq y$: the last character of consecutive Fibonacci words alternates.

Lemma

Only the last occurrence of F_{i-2} is a net occurrence in F_i .

- *F_i* is defined as *F_{i-1} F_{i-2}*, but what if we reverse the order of the concatenation?
- F_{i-1} F_{i-2} and F_{i-2} F_{i-1} only differ in the last two characters:

 F_6 F_5 = abaababa|aba<u>ab</u> F_5 F_6 = abaab|abaaba<u>ba</u>

NF of $F_{i-1}[1 \dots f_{i-1} - 2] = F_{i-2}Q_i$ in F_i

$$\begin{array}{c|ccccc} F_{i-4} & F_{i-5} \\ F_{i-2} & Q_i & \Delta(1) & F_{i-2} \\ \texttt{#} a b a a b a b a & \texttt{a} b a & \texttt{a} b & \texttt{a} & \texttt{b} a & \texttt{b} & \texttt{a} & \texttt{b} & \texttt{b} & \texttt{a} & \texttt{b} & \texttt{$$

Lemma

$$F_{i-4} F_{i-5} = Q_i \Delta (1 - (i \mod 2))$$
 and

 $F_{i-5} F_{i-4} = Q_i \Delta(i \mod 2)$

 \ldots where $Q_i := F_{i-5} F_{i-6} \cdots F_3 F_2$, $\Delta(0) := ba$, and $\Delta(1) := ab$.

Theorem

For each
$$i \ge 7$$
, $\phi_{F_i}(F_{i-2}) = 1$ and $\phi_{F_i}(F_{i-2} Q_i) = 2$.

Conjecture

There are only three net occurrences in F_i .

Idea: a net occurrence may overlap with another net occurrence, but cannot contain it entirely.

We consider the following computational problems:

• SINGLE-NF: process an input text; report the NF of a query string in the input text.

We consider the following computational problems:

- SINGLE-NF: process an input text; report the NF of a query string in the input text.
- ALL-NF: report an occurrence and the NF of each string of positive NF in an input text.

We consider the following computational problems:

- SINGLE-NF: process an input text; report the NF of a query string in the input text.
- ALL-NF: report an occurrence and the NF of each string of positive NF in an input text. For example, the output of ALL-NF on <u>abaababaabaab</u> is: ((1,6),2), ((9,14),1).

Augment the suffix array (SA) with LCP array and LF mapping.

Augment the suffix array (SA) with LCP array and LF mapping.

Theorem

Let $\langle I, r \rangle$ be the SA interval of a string S. For each $i \in \langle I, r \rangle$, let $\ell(i) := \max(LCP[i], LCP[i+1])$, then, (SA[i], SA[i] + |S| - 1) is a net occurrence if $|S| = \ell(i) \ge \ell(LF[i])$.

Augment the suffix array (SA) with LCP array and LF mapping.

Theorem

Let $\langle I, r \rangle$ be the SA interval of a string S. For each $i \in \langle I, r \rangle$, let $\ell(i) := \max(LCP[i], LCP[i+1])$, then, (SA[i], SA[i] + |S| - 1) is a net occurrence if $|S| = \ell(i) \ge \ell(LF[i])$.

Proof idea: S is repeated if $|S| \le \ell(i)$ and is unique if $|S| > \ell(i)$.

SINGLE-NF Algorithm (Example)

i	T[SA[i]n]T[1SA[i]-1]	LCP[i]	$\ell(i)$	LF[i]
• • •				
7	kstcastarstast\$ <mark>#rst</mark>	0	0	19
8	rstast\$ # rstkstcasta	0	3	3
9	rstkstcastarstast\$#	3	3	1
10	st\$#rstkstcastarsta	0	2	4
11	starstast\$ <mark>#rstkstca</mark>	2	3	5
12	stast\$#rstkstcastar	3	3	8
13	stcastarstast\$ <mark>#rstk</mark>	2	2	7
14	stkstcastarstast\$ <mark>#</mark> r	2	2	9

Remainder: $\ell(i) := \max(LCP[i], LCP[i+1])$

The SA interval of "st"

. . .

i	T[SA[i]n]T[1SA[i]-1]	LCP[i]	$\ell(i)$	LF[i]
• • •				
7	kstcastarstast\$ <mark>#rst</mark>	0	0	19
8	rstast\$ # rstkstcasta	0	3	3
9	rstkstcastarstast\$#	3	3	1
10	st\$#rstkstcastarsta	0	2	4
11	starstast\$ <mark>#rstkstca</mark>	2	3	5
12	stast\$#rstkstcastar	3	3	8
13	stcastarstast\$ <mark>#rst</mark> k	2	2	7
14	stkstcastarstast\$ <mark>#</mark> r	2	2	9

SINGLE-NF Algorithm (Example)

When i = 13, the right extension "stc" is unique:

i	T[SA[i]n]T[1SA[i]-1]	LCP[i]	$\ell(i)$	LF[i]
7	kstcastarstast\$ <mark>#rst</mark>	0	0	19
8	rstast\$ # rstkstcasta	0	3	3
9	rstkstcastarstast\$#	3	3	1
10	st\$#rstkstcastarsta	0	2	4
11	starstast\$ <mark>#rstkstca</mark>	2	3	5
12	stast\$#rstkstcastar	3	3	8
13	<pre>stcastarstast\$#rstk</pre>	2	2	7
14	stkstcastarstast\$ <mark>#</mark> r	2	2	9

Remainder: check for $|S| + 1 > \ell(i)$ where $\ell(i) := \max(LCP[i], LCP[i+1])$

The left extension "kst" is located using LF:

i	T[SA[i]n]T[1SA[i]-1]	LCP[i]	$\ell(i)$	LF[i]
• • •				
7	kstcastarstast\$#rst	0	0	19
8	rstast\$ # rstkstcasta	0	3	3
9	rstkstcastarstast\$#	3	3	1
10	st\$#rstkstcastarsta	0	2	4
11	starstast\$ <mark>#rstkstca</mark>	2	3	5
12	stast\$#rstkstcastar	3	3	8
13	stcastarstast\$ <mark>#rstk</mark>	2	2	7
14	stkstcastarstast\$#r	2	2	9

The left extension "kst" is unique:

i	T[SA[i]n]T[1SA[i]-1]	LCP[i]	$\ell(i)$	LF[i]
•••				
7	kstcastarstast\$#rst	0	0	19
8	rstast\$ # rstkstcasta	0	3	3
9	rstkstcastarstast\$#	3	3	1
10	st\$#rstkstcastarsta	0	2	4
11	starstast\$ <mark>#rstkstca</mark>	2	3	5
12	stast\$#rstkstcastar	3	3	8
13	stcastarstast\$ <mark>#rstk</mark>	2	2	7
14	stkstcastarstast\$ <mark>#</mark> r	2	2	9

Remainder: check for $|S| + 1 > \ell(LF[i])$ where $\ell(i) := \max(LCP[i], LCP[i+1])$

Lemma (Coloured range listing (CRL) [Mut02])

After processing a text T of length n in O(n) time, given a range i, \ldots, j , the position of each distinct character ("colour") in $T[i \ldots j]$ can be listed in O(1) time.

Lemma (Coloured range listing (CRL) [Mut02])

After processing a text T of length n in O(n) time, given a range i, \ldots, j , the position of each distinct character ("colour") in $T[i \ldots j]$ can be listed in O(1) time.

For example, when $T = b\underline{ana}na$, $CRL_T(2, 4) = \{2, 3\}$.

Lemma (Coloured range listing (CRL) [Mut02])

After processing a text T of length n in O(n) time, given a range i, \ldots, j , the position of each distinct character ("colour") in $T[i \ldots j]$ can be listed in O(1) time.

For example, when $T = ba\underline{nana}$, $CRL_T(3, 6) = \{3, 4\}$.

Improved SINGLE-NF Algorithm

Lemma (Coloured range listing (CRL) [Mut02])

After processing a text T of length n in O(n) time, given a range i, \ldots, j , the position of each distinct character ("colour") in $T[i \ldots j]$ can be listed in O(1) time.

i	T[SA[i]n]T[1SA[i]-1]
•••	
10	<pre>st\$#rstkstcastarsta</pre>
11	starstast\$ <mark>#rstkstca</mark>
12	stast\$#rstkstcastar
13	stcastarstast\$ <mark>#rstk</mark>
14	stkstcastarstast\$#r

 $CRL_{BWT}(10, 14) = \{10, 12, 13\}$

Theorem

After processing a text T of length n in O(n) time, the NF of a query string of length m can be computed in O(m + d) time where d is the number of distinct left extension characters of S.

Experimental Results

ASA (augmented SA) vs CRL (ASA & coloured range listing): O(m + occ) vs O(m + d)

where m, occ, and d are the length, the number of occurrences and the number of distinct left extension characters of the query string, respectively.

Lemma

 $\sum_{S \in \Lambda} \phi(S) \leq n \text{ and } |\Lambda| \leq n.$

Lemma $\sum_{S \in \Lambda} \phi(S) \leq n \text{ and } |\Lambda| \leq n.$

Let $M := \sum_{S \in \Lambda} |S|$ and $L := \sum_{S \in \Lambda} \phi(S) \cdot |S|$.

ALL-NF-Related Bounds

Let Λ be the set of strings with positive NF in a text T; n = |T|.

Lemma

 $\sum_{S \in \Lambda} \phi(S) \leq n \text{ and } |\Lambda| \leq n.$

Let
$$M := \sum_{S \in \Lambda} |S|$$
 and $L := \sum_{S \in \Lambda} \phi(S) \cdot |S|$.

When $T = \underline{abaaba}ba\underline{abaab}$,

 $\Lambda = \{abaaba, abaab\}, M = 6 + 5, and L = 6 \times 2 + 5 \times 1.$

Lemma $\sum_{S \in \Lambda} \phi(S) \leq n \text{ and } |\Lambda| \leq n.$

Let
$$M := \sum_{S \in \Lambda} |S|$$
 and $L := \sum_{S \in \Lambda} \phi(S) \cdot |S|$.

Theorem

 $M \in \Omega(n)$ and $L \in O(n \log \delta)$.

... where $\delta := \max \{ S(k)/k : k \in [n] \}$, S(k) is the # of distinct strings of length k.

Proof idea: sum of irreducible LCP values.

Conclusion and Future Work

Conclusion:

- Properties of NF:
 - redefinition, Fibonacci words, bounds (more in the paper)
- O(m + d)-time SINGLE-NF algorithm:
 - extensive experiments (more results in the paper)
- O(n)-time ALL-NF algorithm
 - two variants of ALL-NF (more details in the paper)

Conclusion and Future Work

Conclusion:

- Properties of NF:
 - redefinition, Fibonacci words, bounds (more in the paper)
- O(m + d)-time SINGLE-NF algorithm:
 - extensive experiments (more results in the paper)
- O(n)-time ALL-NF algorithm
 - two variants of ALL-NF (more details in the paper)

Future work:

- Only F_{i-2} and $F_{i-2}Q_i$ have positive NF in F_i
- Closing the gap of $\Omega(n) \le M \le L \le O(n \log \delta)$
- $\bullet~$ A lower bound for ${\rm SINGLE-NF}$
- Online computation of NF

The authors thank:

- William Umboh, now one of my supervisors, for his insightful discussions
- Anonymous reviewers for their valuable suggestions
- Hideo Bannai for bringing to our attention a paper on Fibonacci words during the summer school last week

- [LY01] Yih-Jeng Lin and Ming-Shing Yu. Extracting Chinese frequent strings without dictionary from a Chinese corpus and its applications. *Journal of Information Science and Engineering*, 17(5):805–824, 2001.
- [Mut02] S. Muthukrishnan. Efficient algorithms for document retrieval problems. In Proceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms, January 6-8, 2002, San Francisco, CA, USA, pages 657–666. ACM/SIAM, 2002.
 - [Pir97] Giuseppe Pirillo. Fibonacci numbers and words. Discrete Mathematics, 173(1-3):197–207, 1997.

Thank you for your time! Questions? Full paper including code:

