Introduction 0000 Uniquenes 000 Coincidence

Motivation 0000

イロト イロト イヨト イヨト

э

1/18

Open question

Walking on Words

Ian Pratt-Hartmann

Department of Computer Science, Manchester University, UK Instytut Informatyki, Uniwersytet Opolski, Polska email: ian.pratt@manchester.ac.uk

> CPM 2024 Fukuoka, Japan 24.6.24

Introduction •000

Uniquenes 000 Coincidence

Motivation 0000 Open question

Outline

Introduction

Uniqueness of primitive generators

Coincidence of walks

Motivation

An open question

Introduction	Uniqueness	Coincidence	Motivation	Open question
0000	000	000	0000	000

С	b	а	d	е	f	g	h
---	---	---	---	---	---	---	---

Introduction	Uniqueness	Coincidence	Motivation	Open question
0000	000	000	0000	000

Introduction	Uniqueness	Coincidence	Motivation	Open question
0000	000	000	0000	000

a b

Introduction	Uniqueness	Coincidence	Motivation	Open question
0000	000	000	0000	000

a b c

Introduction	Uniqueness	Coincidence	Motivation	Open question
0000	000	000	0000	000

a b c b

Introduction	Uniqueness	Coincidence	Motivation	Open question
0000	000	000	0000	000

abcba

Introduction	Uniqueness	Coincidence	Motivation	Open question
0000	000	000	0000	000

abcbaa

Introduction	Uniqueness	Coincidence	Motivation	Open question
0000	000	000	0000	000

abcbaaa

Introduction	Uniqueness	Coincidence	Motivation	Open question
0000	000	000	0000	000

abcbaaad

Introduction	Uniqueness	Coincidence	Motivation	Open question
0000	000	000	0000	000

abcbaaade

Introduction	Uniqueness	Coincidence	Motivation	Open question
0000	000	000	0000	000

abcbaaadef

Introduction	Uniqueness	Coincidence	Motivation	Open question
0000	000	000	0000	000

abcbaaadefe

Introduction	Uniqueness	Coincidence	Motivation	Open question
0000	000	000	0000	000

abcbaaadefed

Introduction	Uniqueness	Coincidence	Motivation	Open question
0000	000	000	0000	000

abcbaaadefede

Introduction	Uniqueness	Coincidence	Motivation	Open question
0000	000	000	0000	000

abcbaaadefedef

Introduction	Uniqueness	Coincidence	Motivation	Open question
0000	000	000	0000	000

abcbaaadefedefg

Introduction	Uniqueness	Coincidence	Motivation	Open question
0000	000	000	0000	000

abcbaaadefedefgh

Introduction	Uniqueness	Coincidence	Motivation	Open question
0000	000	000	0000	000

abcbaaadefedefghg

Introduction	Uniqueness	Coincidence	Motivation	Open question
0000	000	000	0000	000

c b a d e f g	h
---------------	---

abcbaaadefedefghgf

Introduction	Uniqueness	Coincidence	Motivation	Open question
0000	000	000	0000	

- Let u = a₁ · · · a_n be a word (n ≥ 0). If f : [1, m] → [1, n] is a function (for some m ≥ 0), write u^f = a_{f(1)} · · · a_{f(m)}.
- We call f a walk if it is a surjection satisfying $|f(i+1)-f(i)| \le 1$ for all $i \ (1 \le i < m)$.
- If f is a walk and $w = u^f$, we say u generates w.

• Given a word w, what words u might have generated it?

Introduction	Uniqueness	Coincidence	Motivation	Open question
000●	000	000	0000	

- Every word *u* generates itself and its reversal.
- All other words generated by *u* are strictly longer than *u*.
- Say *u* is primitive if it is not generated by any shorter word.

 $\begin{array}{lll} \epsilon, & \textit{abc}, & \textit{abcdca}, & \textit{abcdedca}, & \ldots \\ \textit{abbc}, & \textit{abacde}, & \textit{abcdcbcde}, & \textit{abcdcb}, & \ldots \end{array}$

- A word *u* is a primitive generator of a word *w* if *u* is primitive and *u* generates *w*.
- Generation is transitive: if u generates v and v generates w, then u generates w. Hence, every word w has some primitive generator u (and in fact ũ as well).

Introduction 0000 Uniqueness •00

Coincidence

Motivation 0000 Open question

Outline

Introduction

Uniqueness of primitive generators

Coincidence of walks

Motivation

An open question

Introduction	Uniqueness	Coincidence	Motivation	Open question
0000	⊙●⊙	000	0000	

• Principal result: primitive generators are unique up to reversal:

Theorem

If u and v are primitive generators of w, then u = v or $u = \tilde{v}$.

The proof has a 'geometrical' character, and is elementary.

- As a consequence, every word featuring more than one letter has exactly two primitive generators, of the form *u* and *ũ*.
- Say that *u* and *v* are primitive conjugates if they have the same primitive generators.

Introduction	Uniqueness	Coincidence	Motivation	Open question
0000	000	000	0000	000

- An immediate corollary is confluence: if *u* and *v* generate *w*, there exists an *x* that generates *u* and *v*.
- It is also possible to prove an analogous amalgamation result.

- Thus, the following are equivalent: (i) *u* and *v* are primitive conjugates; (ii) *u* and *v* generate a common word; (iii) *u* and *v* are generated by a common word.
- However, primitive conjugacy classes are not in general lattices under the relation of generation.

Introduction 0000 Uniquenes 000 Coincidence

Motivation 0000 Open question

Outline

Introduction

Uniqueness of primitive generators

Coincidence of walks

Motivation

An open question

Introduction	Uniqueness	Coincidence	Motivation	Open question
0000	000	000	0000	000

• Primitive generators are unique, but generating walks are not.

 Say that a word u is perfect if u^f = u^g ⇒ f = g. It is trivial to show:

Theorem

Let u be a word. Then u is perfect if and only if it contains no non-trivial palindrome as a factor.

Introduction	Uniqueness	Coincidence	Motivation	Open question
0000	000	00●	0000	

- If u[i,j] is a non-trivial palindrome, we call $\langle i,j \rangle$ a defect of u.
- Denote the set of defects of u by Δ_u .
- If |u| = n, then Δ_u is a binary relation on [1, n]. Denote its equivalence closure by Δ^{*}_u.

Theorem

If u is primitive, and f, g walks on u of length m, then $u^f = u^g$ if and only if $\langle f(i), g(i) \rangle \in \Delta_u^*$ for all $i \ (1 \le i \le m)$.

Thus, whether $u^f = u^g$ depends only on the positions and lengths of the non-trivial palindromes in u.

Introduction 0000 Uniquenes 000 Coincidence

Motivation •000 Open question

Outline

Introduction

Uniqueness of primitive generators

Coincidence of walks

Motivation

An open question

Introduction	Uniqueness	Coincidence	Motivation	Open question
0000	000	000	○●○○	

- The motivation comes from first-order logic.
- If \mathcal{L} is a fragment of first-order logic, $Sat(\mathcal{L})$ is the following problem:

Given: a sentence φ of \mathcal{L} ; Output: Y if φ has a model, N otherwise.

- We seek fragments \mathcal{L} for which $Sat(\mathcal{L})$ is decidable.
- One such fragment is the adjacent fragment, e.g.:

 $\forall x_1x_2x_3 \exists x_4 \forall x_5 (p(x_1x_2x_3x_4x_3x_4x_5) \rightarrow p(x_1x_2x_3x_2x_3x_4x_5)).$

• We require the above theorem on primitive generators to establish the decidability of $Sat(\mathcal{L})$ in this case.

oduction	Uniqueness	Coincidence	Motivation	Open question
00	000	000	0000	000

• Consider the alphabet $[1, k] = \{1, ..., k\}$ and the endomorphism $\sigma : [1, k]^* \to [1, k]^*$ defined by

$$\sigma(i) = \begin{cases} 1 \cdot (i+1) & \text{if } i < k \\ 1 & \text{if } i = k. \end{cases}$$

• This defines a sequence of words

$$\{\alpha_n^{(k)}\}_{n\geq 1} = 1, \quad \sigma(1), \quad \sigma(\sigma(1)), \quad \sigma(\sigma(\sigma(1))), \quad \dots$$

• With k = 2, we obtain the Fibonacci words

$$\{\alpha_n^{(2)}\}_{n\geq 1} = 1, \quad 12, \quad 121, \quad 12112, \quad \dots$$

• With k = 3, we obtain the tribonacci words

$$\{\alpha_n^{(3)}\}_{n\geq 1} = 1, \quad 12, \quad 1213, \quad 1213121, \quad \dots$$

Introduction	Uniqueness	Coincidence	Motivation	Open question
0000	000	000	000	

• It is simple to show that, for all k and all n > k,

$$\alpha_n^{(k)} = \alpha_{n-1}^{(k)} \alpha_{n-2}^{(k)} \cdots \alpha_{n-k}^{(k)}.$$

• All terms of the *k*-bonacci sequence (from the *k*th) have the same primitive generator.

Theorem

For all $k \ge 2$, there exists a word γ_k such that, for all $n \ge k$, γ_k is the primitive generator of $\alpha_n^{(k)}$.

Introduction 0000 Uniquenes 000 Coincidence

Motivation 0000 Open question

Outline

Introduction

Uniqueness of primitive generators

Coincidence of walks

Motivation

An open question

troduction	Uniqueness	Coincidence	Motivation	Open question
000	000	000	0000	

- Let w be a non-empty word and u a primitive generator of w.
 Define the primitive incompressibility of w to be |u|/|w|.
- We ask, for a fixed alphabet *A*, what is the expected primitive incompressibility of words over *A* of length *n*?
- For $|A| \ge 4$ we observe the following pattern:

