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String Indexing

+ Preprocess string S of length n.
- Query(P): return all occurrences of P within S.
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Gapped String Indexing

+ Preprocess string S of length n.
- Query(P1, P2, a, B): return all occurrences of P1and P2 in S whose distance is in [q, 3].
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P> = AN
a, p=3,6

Query(P1, P2, a, B): (1,4), (1,6), (3,6), (7,13)



Simple Solutions

+ Ignore reporting occurrences. Just support existence.
+  Assume point range [q, a].



Set Intersection

- Data structure.
- Suffix tree.
- Suffix array.

- = 0O(n) space.



Set Intersection

P‘I P2

N

+ Query(P1, P2, 0).
- |dentify suffix array ranges of P1 and P-.
+ Scan suffix array ranges in sorted order.

- Merge with respect to a.
= O(|P1]| + |P2| + n) = O(n) time.



Tabulation

v1|(v2| 0] no
Vifve| 1| yes
vilvs| 2| no

- Data structure.

- Suffix tree.

- Suffix array

- Table with answers to queries for all pairs of nodes and gaps.
- = 0O(n3) space.




Tabulation

P‘I P2

N

v1|(v2| 0] no
vilvze| 1| yes
vilvs| 2| no

+ Query(P1, P2, Q).
+ |dentify nodes for P1 and P-.

+ Lookup In table.
= O(|P4]| + |P2|) time.




Improved Tabulation

<€ >
<€ > € >
<€ > € > € > € >
<€ >€ > € > € > € > € > € > € >

- Data structure.
- Build sets for the dyadic intervals of the suffix array.
+ For each pair of dyadic intervals store all pairwise distances.

- Total size of set for the dyadic intervals is O(n log n) = O((n log n)?) = O(n?) space.



Improved Tabulation

<€ >
<€ > € >
<€ > € > € > € >
<€ >€ >E—> € > € >E—> <€ > € >

+ Query(P1, P2, 0).
+ Cover suffix array ranges with O(log n) dyadic intervals.
+ Query all O(log? n) pairs.

- = O(|P4] + |P2| + log? n) time.



Space Time
Set Intersection O(n) O(n)
Tabulation O(n2) O(|P41] + |P2|)
New O(n2-5/3) O(|P1| + |P2| + nd)

Question: Can we get subguadratic space and sublinear query time?



3-Sum Indexing

* Preprocess sets A and B of size n.
- Query(z): decide if thereisa e Aand b € B such thata + b =z.

- Theorem [Golovnev et al., STOC 2020]
- 3-sum indexing with O(n2-8/3) space and O(n%) query time.
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Shifted Set Intersection

+ Preprocess sets S1, So, ..., Sk of total size n.
- Query(i, j, d): decide if there is x € Siand y € S; such that y - x = d.



Shifted Set Intersection = 3-Sum Indexing

S+ So S3
—_— ——— —_—
S So S3
A b
B —tt—t— -
S So S3
- Reduction.
-+ Layout sets S1, So, ..., Skin A and B to avoid the same differences.

- Scale shifted set intersection query according to i and | = 3-sum indexing query.
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Approximate Gapped Set Intersection

+ Preprocess sets Sq, So, ..., Sk of total size n.

- Query(i, j, d, ):
- Yes: ifthereisx e Sjandy € Sjsuch thaty - x =d + 21,
- No:ifthereisnoxe Siandy € Sjsuchthaty -x=d + 2



Approximate Gapped Set Intersection = Shifted Set Intersection

S, ={1,2,4,5,8,12,13,17, ...}
S!'=1{0,1,2,4,6,8,...}

~/

S?=1{0,1,2,3,4,...}

- Reduction.

+ For each set S;, construct “approximate” sets by dividing by powers of two and rounding
down.

- Approximate gapped set intersection query = O(1) shifted set intersection queries.



Gapped Set Intersection

+ Preprocess sets S1, So, ..., Sk of total size n.
- Query(i, j, [a, B]): decide if there is x € Siand y € Sj such thaty - x € [a, B].



Gapped Set Intersection = Approximate Gapped Set Intersection

<—<—|—>->
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- Reduction.
- Store approximate gapped set intersection structure.

-+ Gapped set intersection query by covering [a, ] interval with O(log n) approximate gapped
set intersection queries.



Gapped String Indexing

+ Preprocess string S of length n.
-+ Query(P1, P2, a, B): decide if there is occurrence of P1and P2 in S whose distance is in [a, (].



Gapped String Indexing = Gapped Set Intersection

<€ >
<€ > € >
<€ > € > € > € >
<€ >€ >E—> € > € >E—> <€ > € >

- Reduction.
+ Store gapped set intersection structure for dyadic intervals of suffix array.

-+ Gapped string indexing query = gapped set intersection on covering intervals.



4 )

Gapped String
Indexing

\_ _/

-

\_

Gapped Set
Intersection

~

S

~

\_

Approx
Gapped Set
Intersection

~

S

~

\_

Shifted Set
Intersection

~

S

~

\_

3-Sum
Indexing

_J




Gapped String Indexing

+ Theorem.
- Gapped string indexing with O(n2-8/3) space and O(n%) query time.

- What about reporting?



3-Sum Indexing with Reporting

* Preprocess sets A and B of size n.
- Query(z): report all pairs a e Aand b € B such that a + b = z.

+Algorithm idea.
-+ 3-sum existence query returns a certificate.
- Qutput certificate and recurse on subproblems.






3-Sum Indexing with Reporting

+ Theorem.
- 3-sum indexing with reporting with O(n2-8/3) space and O(nd (occ+1)) query time.
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3-Sum Indexing with Reporting

+ Theorem.
- 3-sum indexing with reporting with O(n2-8/3) space and O(nd (occ+1)) query time.

- Theorem.

- Gapped string indexing with reporting with O(n2-6/3) space and O(|P1| + |P2| + nd (occ+1))
query time.



Gapped String Indexing

- Conclusion.

- Gapped string indexing with reporting with O(n2-6/3) space and O(|P1| + |P2| + nd (occ+1))
query time.

+ Other results.
- Alternative trade-off for gapped string indexing.
 New trade-off for jumbled indexing.
- Better trade-offs for one-sided intervals.

- Open problems
- Can we take advantage of structure in gapped string indexing?



