
Gapped String Indexing in Subquadratic Space and
Sublinear Query Time
Philip Bille
Inge Li Gørtz

Moshe Lewenstein

Solon P. Pissis

Eva Rotenberg

Teresa Anna Steiner

String Indexing
• Preprocess string S of length n.

• Query(P): return all occurrences of P within S.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

n a n a n a n a b a t m a n

P = NA

Query(P): 1, 3, 5, 7

Gapped String Indexing
• Preprocess string S of length n.

• Query(P1, P2, ɑ, β): return all occurrences of P1 and P2 in S whose distance is in [ɑ, β].

P1 = NA

P2 = AN

ɑ, β = 3,6

Query(P1, P2, ɑ, β): (1,4), (1,6), (3,6), (7,13)

1 2 3 4 5 6 7 8 9 10 11 12 13 14

n a n a n a n a b a t m a n

Simple Solutions
• Ignore reporting occurrences. Just support existence.

• Assume point range [ɑ, ɑ].

Set Intersection

• Data structure.

• Suffix tree.

• Suffix array.

• ⇒ O(n) space.

Set Intersection

• Query(P1, P2, ɑ).

• Identify suffix array ranges of P1 and P2.

• Scan suffix array ranges in sorted order.

• Merge with respect to ɑ.

• ⇒ O(|P1| + |P2| + n) = O(n) time.

P1 P2

Tabulation

• Data structure.

• Suffix tree.

• Suffix array

• Table with answers to queries for all pairs of nodes and gaps.

• ⇒ O(n3) space.

v1 v2 0 no
v1 v2 1 yes
v1 v3 2 no

Tabulation

• Query(P1, P2, ɑ).

• Identify nodes for P1 and P2.

• Lookup in table.

• ⇒ O(|P1| + |P2|) time.

P1 P2

v1 v2 0 no
v1 v2 1 yes
v1 v3 2 no

Improved Tabulation

• Data structure.

• Build sets for the dyadic intervals of the suffix array.

• For each pair of dyadic intervals store all pairwise distances.

• Total size of set for the dyadic intervals is O(n log n) ⇒ O((n log n)2) = Õ(n2) space.

Improved Tabulation

• Query(P1, P2, ɑ).

• Cover suffix array ranges with O(log n) dyadic intervals.

• Query all O(log2 n) pairs.

• ⟹ O(|P1| + |P2| + log2 n) time.

Space Time

Set Intersection O(n) O(n)

Tabulation Õ(n2) Õ(|P1| + |P2|)

New Õ(n2-δ/3) Õ(|P1| + |P2| + nδ)

Question: Can we get subquadratic space and sublinear query time?

3-Sum Indexing
• Preprocess sets A and B of size n.

• Query(z): decide if there is a ∈ A and b ∈ B such that a + b = z.

• Theorem [Golovnev et al., STOC 2020]

• 3-sum indexing with Õ(n2-δ/3) space and Õ(nδ) query time.

Gapped String
Indexing

Gapped Set
Intersection

Approx
Gapped Set
Intersection

Shifted Set
Intersection

3-Sum
Indexing⟹ ⟹ ⟹⟹

Shifted Set Intersection
• Preprocess sets S1, S2, …, Sk of total size n.

• Query(i, j, d): decide if there is x ∈ Si and y ∈ Sj such that y - x = d.

Shifted Set Intersection ⟹ 3-Sum Indexing

• Reduction.

• Layout sets S1, S2, …, Sk in A and B to avoid the same differences.

• Scale shifted set intersection query according to i and j ⟹ 3-sum indexing query.

A

B

S1 S2 S3

S1

S1 S2 S3

S2 S3

Gapped String
Indexing

Gapped Set
Intersection

Approx
Gapped Set
Intersection

Shifted Set
Intersection

3-Sum
Indexing⟹ ⟹ ⟹⟹

Approximate Gapped Set Intersection
• Preprocess sets S1, S2, …, Sk of total size n.

• Query(i, j, d, l):

• Yes: if there is x ∈ Si and y ∈ Sj such that y - x = d ± 2l-1.

• No: if there is no x ∈ Si and y ∈ Sj such that y - x = d ± 2l

d +2l-1 +2l-2l-1-2l

Approximate Gapped Set Intersection ⟹ Shifted Set Intersection

• Reduction.

• For each set Si, construct “approximate” sets by dividing by powers of two and rounding

down.

• Approximate gapped set intersection query ⟹ O(1) shifted set intersection queries.

𝖲𝗂 = {𝟣, 𝟤, 𝟦, 𝟧, 𝟪, 𝟣𝟤, 𝟣𝟥, 𝟣𝟩, …}

𝖲̃𝟣
𝗂 = {𝟢, 𝟣, 𝟤, 𝟦, 𝟨, 𝟪, …}

𝖲̃𝟤
𝗂 = {𝟢, 𝟣, 𝟤, 𝟥, 𝟦, …}

Gapped Set Intersection
• Preprocess sets S1, S2, …, Sk of total size n.

• Query(i, j, [ɑ, β]): decide if there is x ∈ Si and y ∈ Sj such that y - x ∈ [ɑ, β].

Gapped Set Intersection ⟹ Approximate Gapped Set Intersection

• Reduction.

• Store approximate gapped set intersection structure.

• Gapped set intersection query by covering [ɑ, β] interval with O(log n) approximate gapped

set intersection queries.

ɑ β

Gapped String Indexing
• Preprocess string S of length n.

• Query(P1, P2, ɑ, β): decide if there is occurrence of P1 and P2 in S whose distance is in [ɑ, β].

Gapped String Indexing ⟹ Gapped Set Intersection

• Reduction.

• Store gapped set intersection structure for dyadic intervals of suffix array.

• Gapped string indexing query ⟹ gapped set intersection on covering intervals.

Gapped String
Indexing

Gapped Set
Intersection

Approx
Gapped Set
Intersection

Shifted Set
Intersection

3-Sum
Indexing⟹ ⟹ ⟹⟹

Gapped String Indexing
• Theorem.

• Gapped string indexing with Õ(n2-δ/3) space and Õ(nδ) query time.

• What about reporting?

3-Sum Indexing with Reporting
• Preprocess sets A and B of size n.

• Query(z): report all pairs a ∈ A and b ∈ B such that a + b = z.

• Algorithm idea.

• 3-sum existence query returns a certificate.

• Output certificate and recurse on subproblems.

A

B

A1 A2

B1 B2

A1

B2

A2

B1

3-Sum Indexing with Reporting
• Theorem.

• 3-sum indexing with reporting with Õ(n2-δ/3) space and Õ(nδ (occ+1)) query time.

Gapped String
Indexing

Gapped Set
Intersection

Approx
Gapped Set
Intersection

Shifted Set
Intersection

3-Sum
Indexing⟹ ⟹ ⟹⟹

3-Sum Indexing with Reporting
• Theorem.

• 3-sum indexing with reporting with Õ(n2-δ/3) space and Õ(nδ (occ+1)) query time.

• Theorem.

• Gapped string indexing with reporting with Õ(n2-δ/3) space and Õ(|P1| + |P2| + nδ (occ+1))

query time.

Gapped String Indexing
• Conclusion.

• Gapped string indexing with reporting with Õ(n2-δ/3) space and Õ(|P1| + |P2| + nδ (occ+1))
query time.

• Other results.

• Alternative trade-off for gapped string indexing.

• New trade-off for jumbled indexing.

• Better trade-offs for one-sided intervals.

• Open problems

• Can we take advantage of structure in gapped string indexing?

