CPM2024-hightlight

Optimal-Time Quer Constructions of F in BWT-runs Bounde

Yasuo Tabei

Collaboration with

Takaaki Nishimoto and Shuns

RIKEN-AIP (https://aip.rike

Optimal-Time Queries and Constructions RLBWT in BWT-runs Bounded Space

- A summary of two papers presented at ICALP
	- 2021: Optimal-Time Queries on BWT-runs Compressed **Indexes**
	- 2022: An Optimal-Time RLBWT Construction in BWT-Runs Bounded Space
- A key element common to both papers is an efficient bipartite graph representation called LF-interval graph in RLBWT.
- Structure of the Talk:
	- First Half: Focus on Queries
	- Second Half: Focus on Constructions

Main Topic: Compressed Information Processing of Strings with Many Repetitions

• Recently, strings characterized by many repetitions have become widespread in both research and industrial applications.

Ex: Genome sequences, version-controlled documents, and more

- Compressed information processing of these repetitive strings is a central research topic in string processing.
- Several formats have been developed for this type of data, including grammars and LZtype compressions.
- We focus on RLBWT, a run-length compressed version of Burrows-Wheeler Transform (BWT) in this talk.

The Burrows-Wheeler Transform (BWT):

A permutation of a string T created by sorting all the circular shifts of T and taking the last column L of the resulting matrix.

• Key feature of BWT: Identical characters tend to cluster together, facilitating a compression

• LF mapping:

LF[i] = (the number of characters smaller than $L[i]$ in F) + (the rank of $L[i]$ at position i in L)

One-to-one

- LF[i] returns the position in the sorted circular shifts of T obtained by moving the last character of the i-th circular shift to its beginning
- Property of LF: (A) it defines a one-to-one correspondence between column L and column F

(B) It maps positions with consecutive characters in L to the consecutive positions in $\mathsf F$ $(i.e., if L[i]=L[i+1], then L[F[i+1]=LF[i]+1 holds)$

Backward Search Using LF-mapping : Find the SA-interval [s,t] of pattern P on L

- \bigcup Initialize [s,t] = [1,lLl] and h = IPI
- 2 Find the first and last occurrence positions $[k, \ell]$ of character P[h] in the interval [s,t] on L
	- Rank and select on L are used for computing $[k, \ell]$
- \Diamond Compute s'=LF[k] and t'=LF[ℓ] using LF-mapping
	- Every element $j \in [s',t']$ satisfies the condition that suffix P[h..IPI] is a prefix of suffix T[SA[j]..ITI]
- Φ Update s=s', t=t', h=h-1, and go to step Φ if s \leq t or h>0 hold
- Complexity: O(IPI log σ) time and O(ITI log σ) bits of space (σ : alphabet size)

Recovery of Occurrence Positions of Pattern P in T Using Suffix Array

- Backward search determines the SA-interval [s,t] on L that corresponds to pattern $\mathsf P$.
- Once [s,t] is established, the positions of P in T can be computed using the suffix array SA.
- $-p = SA[i]$ for $i \in \{s, s+1, ..., t\}$
- Implementation detail: Suffix array is sampled and kept in memory for space efficiency
- If ITI/logITI positions are sampled, O(occ logo logITI) time and O(ITI) bits of space are used.

(σ : alphabet size, occ: number of occurrences of P in T)

Run-Length Encoded BWT (RLBWT)

- BWT L=bbabbbaaaa $\$\rightarrow$ RLBWT L'=b2a1b3a4\$1
- A run is defined as the maximum repetition of the same character.
- Key Property: The BWT's ability to cluster the identical characters makes the run-length encoding particularly effective
- This property will significantly improve compression ratios.
- Actually, RLBWT is particularly effective for highly repetitive strings
	- Ex: 1,000 human genomes of chromosome 19 (60GB) can be compressed to a size of 250MB
- Technical Challenge : How can we realize backward search on RLBWT and occurrence position recoveries within the compressed size of RLBWT?

Previous Result: Backward Search and Occurrence Position Recoveries on RLBWT [T.Gagie, G.Navarro, N.Prezza, SODA'18, J.ACM'20]

- The researchers introduced the following three steps:
- 1. SA-interval computation: Compute SA-interval [s,t] on L that corresponds to pattern P
	- O(IPIloglog(ITI/r)) time
- 2. Suffix array computation: Compute suffix array SA[s] for the first position s in [s,t]
	- O(IPI loglog(ITI/r)) time
- 3. Occurrence position recoveries: Recover occurrence positions of P in T using Φ-1-function
	- Φ^{-1} -function takes SA[i] and returns SA[i+1]
	- O(occ loglog(ITI/r)) time
- Space: O (r log ITI) bits (r: number of runs in T)
- Time: $O((|P| + occ)loglog(|T|/r))$ is not optimal (i.e., $O(|P| + occ)$). (occ: the number of occurrences of P in T)
- This arises due to the use of the predecessor data structure for computing LF-mappings and φ^{-1} -functions.
- We will improve each of these three steps by introducing a novel data structure,
achieving O(IPI+occ) time and O(r log ITI) bits of space.

LF-interval Graph: A bipartite graph representing LF-mapping on BWT

- The structure consists of two sets of nodes and two types of edges
- (I) Sets of nodes $V_F V_L$: Each node in V_F and V_L represents a repetition in F and L, respectively.

(II) A set of undirected edges E_{U} . Represent LF-mapping between repetitions in nodes.

- (III) Sets of directed edges E_{F1} , E_{IF} : Each edge in E_{F1} indicates the starting position of a repetition in V_F is included within the interval of the repetition of a node in V_L .
	- E_{LE} is defined similarly.
- Two key properties of LF-interval graph:
	- 1. The number of nodes r' is bounded by $O(r)$ (r: the number of runs in T)
	- 2. a-heavyness: The number of directed edges connecting to each node is bounded by $O(a)$ (a: constant)

Backward Search on LF-interval Graphs : Find SA-interval [s,t] of pattern P on L

- LF-interval graph is traversed as performed during the backward search in the BWT
- k: the first position on L such that $L[k]=c$ holds for (i) a given character c in P and (ii) a given SA-interval.
- u: the first node including position k on L in the repetition of u
- There are two important issues to be solved in backward search on LF-interval graph:
- Q1: Which element d in the repetition of node u' on V_F corresponds to the s'-th element on F , where $s' = LF[K]$?

Q2: Which node on V_1 contains the s'-th element in L in the repetition?

Backward Search on LF-interval Graphs : Find SA-interval [s,t] of pattern P on L

Q1: Which element d in the repetition of node u' on V_F corresponds to the s'-th element on F , where $s' = LF[k]$?

A1: Use the following property of LF-mapping:

Consecutive characters on u are mapped to consecutive ones on u'

- Thus, d is preserved in the two repetitions of nodes u and u' connected by an undirected edge
- The d-th element in the repetition of \mathbf{u}' on \mathbf{V}_F are computed from the same d-th element in the repetition of \bf{u} on \bf{V}_L

Backward Search on LF-interval Graphs : Find SA-interval [s,t] of pattern P on L

Q2: Which node on V_1 contains the s'-th element in L in the repetition?

- A2: Use this fact: Such node must connect to u' by a directed edge in E_{FI} or E_{IF} .
- Let x be the node connected to \mathbf{u}' by a directed edge in \mathbf{E}_{F}
- A linear search starting from x on V_1 can find a node including the s'-th element
- Use array A_{L} which includes starting positions of the repetition of each node on V_{\perp}
- Computation time: O(α)
	- This efficiency is due to the number of nodes connected to u' by directed edges being O(α)

Compute suffix array SA[s] for the first position s in SA-interval [s,t]

- Idea : Leverage the property of LF-mapping: SA[LF[i]]=SA[i]-1
- Thus, we can compute SA[s'] for the first position s' of the next SA-interval $[s',t']$ from $SA[s]$ for the first position s of the current SA-interval [s,t].
- Compute SA[s'] as follows:
- Case (i): If $c=L[k]$ corresponds to the first character of the repetition of u, $SA[s^r] = SA_{SAMP-F}[u] - 1$
- Case (ii): Otherwise, SA[s'] = SA[s] 1
- Array SA_{SAMP_F} sampled SA according to the starting position of the repetition of each node in V_{\perp}
- The computation is valid because case (i) must hold at the first iteration in the backward search.

Computing Φ-1-function : Given SA[i], it returns SA[i+1]

- Idea : (i) Build a partite graph that represents the relationship between input SA[i] and output SA $[i+1]$ and (ii) compute Φ^{-1} -function on the graph
- Set of nodes SA_{same} Includes sampled SA according to the ending position of the repetition for each node on V_{\perp}
- Set of nodes $\Phi^{-1}(SA_{\text{samn}})$ lncludes $SA[i+1]$ if $SA[i]$ is included in SA_{samn}
- Undirected edges E'_{U} : An edge connecting $SA_{\text{samp}}[i]$ to $\Phi^{-1}(SA_{\text{samp}})[j]$ indicates $\Phi^{-1}(SA_{\text{same}})[j] = SA[i+1]$ holds
- Directed edges E_{RL} : Each position i in $\Phi^{-1}(SA_{\text{samp}})$ is included within the interval of a node in SA_{samp.}

Computing Φ-1-function : Given SA[i], it returns SA[i+1] (Cont.)

- For a given position i in SA-interval [s,t], let u be the node on SA_{SAMP} that contains $SA[i]$ within the interval.
- Let v be the node connected to node u by an undirected edge in E'_{U}
- \cdot $\Phi^{-1}(SA[i])$ is computed by leveraging the following property:

Each node in SA_{SAMP} represents the consecutive SA's values; The consecutive SA's values in each node are also mapped to $\Phi^{-1}(SA_{\text{samp}})$ as the same consecutive values.

- Can compute $\Phi^{-1}(SA[i])$ as follows: $\Phi^{-1}(SA[i]) = \Phi^{-1}(SA_{\text{samp}})[v] + (SA[i] SA_{\text{samp}}[u])$ =d
- Detail: The next u corresponding to the computed $\Phi^{-1}(SA[i])$ is obtained using a linear search on SA_{same} , starting from u' connected to v by the directed edge in $E_{\text{RL}}(O(\alpha)$ time)

Summary on Optimal-Time Backward Search and Occurrence Position Recoveries on RLBWT

- 1. SA-interval computation: Compute interval [s,t] on L that corresponds to pattern P
	- $O($ |P|loglog(n/r)) time \rightarrow $O($ |P|) time
- 2. Suffix array computation: Compute suffix array SA[s] for the first position s in [s,t]
	- $O(|P| \text{ loglog}(n/r))$ time $\rightarrow O(|P|)$ time
- 3. Occurrence position recoveries: Recover occurrence positions of P in T using Φ-1 function
	- Φ^{-1} -function takes $SA[i]$ and returns $SA[i+1]$
	- O(occ $loglog(n/r)$) time \rightarrow O(occ) time
- O(IPI+occ) time and O(r log n) bits of space

•Optima-Time Construction of RLBWT

Extension of BWT (Review)

- BWT L' of string cT can be computed from the BWT L of string T throughout three steps.
- $\circled{1}$ Relace the special character \$ on L by character c
- $\circled{2}$ Insert the special character \$ into L at position k, k is computed by the LF-formula:
	- $k=occ_{\leq}(L,c)+rank(L,j,c)$ for j such that $L[j]=\$ holds
- $\circled{3}$ Insert character c into F at position k
- Update time: O(log |T|)
- We will update LF-interval graphs by leveraging this extension.

LF-interval Graph and Additional Data Structures for **Extensions**

- The following data structures are added for extensions
- D_{FL} : Each element represents the difference between (i) the starting position of the repetition of node u on \bf{V}_F and (ii) the starting position of the repetition of the node connected to \bf{u} by the directed edge in \bf{E}_{FL}
- D_{LE} : defined similarly to D_{E}
- B-tree: used for identifying the insertion position of a new node on V_F
	- It keeps key-value pairs
	- key is a pair (c, v) for character c and node v on V_L
	- Value is the node u on V_F that is connected to v by an undirected edge in E_U
	- Given a key (c', v') , B-tree returns value u associated to the maximum key (c, v) satisfying $c < c'$ or (c=c'∧v≤v')
- Order maintenance data structure for comparing nodes in V_{\perp}
- O(r' log n) bits of space in total (r': number of nodes)

Construction of RLBWT: Realizing the extension of BWT on LF-interval Graph

- **(1)** Replace-node: (i) The node labeled \oint on V_L is replaced by a new node labeled c; (ii) A new node labeled c is inserted into an appropriate position on V_F (O(1) or O(log r) time)
- 2) Insert-node: A new node labeled $\frac{1}{9}$ is inserted into an appropriate position on V_1 (O(a) time)
- ③ Merge-node: If newly inserted nodes are adjacent to nodes with the same labels, they are merged $(O(1)$ time)
- Φ Update-edge: Edges are updated appropriately. (O(α^2) time)
- $\circled{5}$ Split-node: Any node with at least **α** directed edges is split. (O(ar) time)
- Steps \mathbb{O}, \mathbb{Q} and \mathbb{O} are detailed in the following slides.

\bigcirc Replace-node: (i) The node labeled \$ on V_L is replaced by a new node labeled c; (ii) A new node labeled c is inserted into an appropriate position on V_F

- How can we compute the position on V_F ? There are two cases:
- Case \mathbb{D} : the new node v on V_1 has the same label as either or both of adjacent nodes
- If the node is adjacent to the node v above and has the same label as v , the insertion position is below the node connected to \bf{v} by an undirected edge in $\bf{E}_{\rm U}$.
- The other case is similarly computed. (O(1) time)
- Case $\circled{2}$: The insertion position is computed using B-tree. (O(log r) time)

②Insert-node: Insert a new node labeled \$ into an appropriate position on V_{\perp}

- Let v' be the node on V_L that includes the position of the inserted character c on V_F
- $\left(\begin{matrix} 1 \\ 1 \end{matrix} \right)$ v' is then split
- (2) a new node labeled $\frac{1}{3}$ is inserted between the split nodes.
- Computation time: O(α)

⑤Split-node: Any node with directed edges more than α (α-heavy) is split.

- Splitting nodes continues until the number of directed edges connected to each node is no more than α.
- Computation time per split: O(α)
- The total number of split nodes: $O(r)$

Reason:

- \cdot The number of directed edges after m splits of nodes is at least $\lceil \alpha/2 \rceil m$.
- \cdot Meanwhile, the number of directed edges after m splits of nodes is $r + 2m$.
- Solving $\lfloor \alpha/2 \rfloor m \le r + 2m$ yields $m = O(r)$ for $\alpha \ge 16$.

Experimental Results on A Large Dataset

- R-comp (this study) is compared to 1. PP: A.Policriti and N.Prezza, 2018
- 2. Faster-PP: T. Ohno et al., 2018.

Dataset

Summary on Optimal-Time Construction of RLBWT

- Construction time for string T at each step is summarized as follows:
- ① Replace-node: O(|T|+r log r)
- ② Insert-node: O(|T|α)
- ③ Merge-node: O(|T|α)
- ④ Update-edge: O(|T|α2)
- ⑤ Split-node: O(rα)
- Total construction time: O(ITIα²+rα log r)
- O(ITI) time holds for constant α and $r = |T|/log|T|$ (satisfied for strings with many repetitions!)
- O(r logITI) bits of space (because the total number of split nodes is $O(r)$)

Summary of This Talk

- We have presented optimal-time queries and constructions of RLBWT in BWT-runs Bounded Space
- A key element is an efficient bipartite graph representation called LF-interval graph in RLBWT.
- Backward search and occurrence position recoveries
	- Complexity: O(IPI+occ) time and O(r log ITI) bits of space
- Construction
	- Complexity: O(ITI) time and O(r log ITI) bits of space
- Take-home message from this talk:

Bipartite graphs are useful for efferently representing LF-mapping in BWT!