CPM2024-hightlight June 27, 2024

Optimal-Time Queries and
Constructions of RLBWT
iIn BWT-runs Bounded Space

Yasuo Tabel

Collaboration with

Takaaki Nishimoto and Shunsuke Kanda
RIKEN-AIP (https://aip.riken.jp/)

https://aip.riken.jp/

Optimal-Time Queries and Constructions RLBWT
in BWT-runs Bounded Space

« A summary of two papers presented at ICALP

« 2021: Optimal-Time Queries on BWT-runs Compressed
Indexes

« 2022: An Optimal-Time RLBWT Construction in BWT-
Runs Bounded Space

« A key element common to both papers is an efficient bipartite graph representation called
LF-interval graph in RLBWT.

o Structure of the Talk:
* First Half: Focus on Queries
e Second Half: Focus on Constructions

Main Topic: Compressed Information Processing of
Strings with Many Repetitions

» Recently, strings characterized by many repetitions have become widespread in both
research and industrial applications.

Ex: Genome sequences, version-controlled documents, and more

« Compressed information processing of these repetitive strings is a central research topic
in string processing.

« Several formats have been developed for this type of data, including grammars and LZ-
type compressions.

« We focus on RLBWT, a run-length compressed version of Burrows-Wheeler Transform
(BWT) in this talk.

The Burrows-Wheeler Transform (BWT):

A permutation of a string T created by sorting all the circular shifts of T

and taking the last column L of the resulting matrix.
- Key feature of BWT: Identical characters tend to cluster together, facilitating a compression

* LF mapping:
LF[i] = (the number of characters smaller than L[i] in F) + (the rank of L[i] at position i in L)

 LFJi] returns the position in the sorted circular shifts of T obtained
by moving the last character of the i-th circular shift to its beginning

« Property of LF: (A) it defines a one-to-one correspondence between column L and column F
(B) It maps positions with consecutive characters in L to the consecutive positions in F

(i.e., if L[i]=L[i+1], then LF[i+1]=LFJi]+1 holds) One-to-one
, _ _ correspondence
circular shifts of T SAE L:BWT | SA sorted circular shifts j F
1] babababaab$ 111 Sbabababaaby| 1| 11| $babababaab 13
2| abababaab$b 8|, aab$bababdbj 2| 8| aab$bababab 2a
3| bababaab$ba 9|} ab$bababatal 3| 9| ab$babababa 3a
4| ababaab$bab 6|'dpaab$babdb!| LF[8] =4 [6| abaab$babab 4 a
Rotation | 5]babaab$baba| Sort 4|1 dbabaab$bdb! 5| 4[ababaab$bab 5a
6| abaab$babab 21 gbababaabgb! 6| 2|abababaab$b 6a
T=babababaab$) [7|baab$bababa > [10]ibSbabababaai 7 [10] b$babababaa 7D
8| aab$bababab 7 [ibaab$babahay i 8| 7|baab$bababa 8b
9| ab$babababa 5| babaab$bakja; 9| 5|babaab$baba 9b
10| b$babababaa 3|;bababaab$ta; 10| 3|bababaab$ba 10 b
11| $habababaab 1|!babababaal$! 11| 1| babababaab$ Mb

0O OO O OCTOTO® T T

Backward Search Using LF-mapping :
Find the SA-interval [s,t] of pattern P on L

@ Initialize [s,t] =[1,ILI] and h = IPI
@ Find the first and last occurrence positions [k,#] of character P[h] in the interval [s,t] on L
- Rank and select on L are used for computing [k,?]
® Compute s'=LF[k] and t'=LF[#] using LF-mapping
« Every element | € [s',1'] satisfies the condition that suffix P[h..IPI] is a prefix of suffix T[SA[]]..ITI]
@ Update s=s’, t=t’, h=h—1, and go to stepQ if s = t or h>0 hold

« Complexity: O(IPI log o) time and O(ITI log o) bits of space (o : alphabet size)

Input

P=aba i E L i SA sorted circular shifts
- 1$ b 1 [11] $babababaab
h=1 5 22 b > | 8| aab$bababab
[s,1]=[8,11] 3a a 3| 9] ab$babababa
S’44a b 4| 6 ab$babab
I 5a b P[1]=a 5(4 baab$bab
'y 6a b 6| 2 babaab$b
7b a® @ 7 [10[b$babababaa
Output 8 b atk ¢S 8| 7|baab$bababa
[s”,t]=[4,6] 9b aI 9| 5|babaab$baba
10 b av?l 10| 3|bababaab$ba
11 b $ t 11| 1|babababaab$

Recovery of Occurrence Positions of Pattern Pin T
Using Suffix Array

« Backward search determines the SA-interval [s,i] on L that corresponds to pattern P.

* Once [s,1] is established, the positions of P in T can be computed using the suffix array SA.
-p = SA[j] for je{s,s+1,...,1}

« Implementation detail: Suffix array is sampled and kept in memory for space efficiency

« If ITl/loglT! positions are sampled, O(occ logo loglTl) time and O(ITI) bits of space are
used.

(o: alphabet size, occ: number of occurrences of P in T)

| SA sorted circular shifts
11| $babababaab
aab$bababab
ab$babababa

ab$babab T=babababaab$

baab$bab o

babaab$b
b$babababaa
baab$bababa
babaab$baba
bababaab$ba
babababaab$

[s,1]=[4,6] :
Interval of P=abaon L

»

p=2,4,6

—
CQowoo~NOOOGP~,rWON—

=|w|a(N[g[N]A|o|o]wo

—
—

Run-Length Encoded BWT (RLBWT)

BWT L=bbabbbaaaa$ — RLBWT L'=b2a1b3a4$1
A run is defined as the maximum repetition of the same character.

Key Property: The BWT'’s ability to cluster the identical characters makes the run-length
encoding particularly effective

This property will significantly improve compression ratios.
 Actually, RLBWT is particularly effective for highly repetitive strings

Ex: 1,000 human genomes of chromosome 19 (60GB) can be compressed
to a size of 250MB

« Technical Challenge : How can we realize backward search on RLBWT and occurrence
position recoveries within the compressed size of RLBWT?

Previous Result;: Backward Search and Occurrence Position
Recoveries on RLBWT

» The researchers introduced the following three steps:
1. SA-interval computation: Compute SA-interval [s,t] on L that corresponds to pattern P

2. Suffix array computation: Compute suffix array SA[s] for the first position s in [s,i]

3. Occurrence position recoveries: Recover occurrence positions of P in T using ®-'-function
« O '-function takes SA[i] and returns SA[i+1]

Space: O (r log ITI) bits (r: number of runs in T)

Time: O((IPI + occ)loglog#ITI/r)) is not optimal (il_.e., O(IPl+occ)).
(occ: the number of occurrences of P in T)

This arises due to the use of the predecessor data structure for computing LF-mappings
and ¢-'-functions.

We will improve each of these three steps by introducing a novel data structure,
achieving O(IPl+occ) time and O(r log ITl) bits of space.

LF-interval Graph: A bipartite graph representing
LF-mapping on BWT
« The structure consists of two sets of nodes and two types of edges
(I) Sets of nodes VV, : Each node in V-and V| represents a repetition in F and L, respectively.
(I1) A set of undirected edges L : Represent LF-mapping between repetitions in nodes.
(

lIl) Sets of directed edges Er, E,r: Each edge in E¢, indicates the starting position of a
repetition in V¢ is included within the interval of the repetition of a node in V,.

« E,ris defined similarly.
« Two key properties of LF-interval graph:

1. The number of nodes r’ is bounded by O(r) (r: the number of runs in T)
2. a-heavyness: The number of directed edges connecting to each node is bounded by O(a) (a: constant)

i F L Ve Vi Ve By W Ve ErLEF VL
1$ b 1% b [1 1% b1 1S [b1
2 a b 2| a 2| a 2| a
3 a a 3| a a|l2 3| a al2 3lafl a|2
4 a b b |3 b3 « b3
5a b 4| a 4| a 4l a
6 a b)
7 b a 5|b al4 5|b al4 5|b F al4
8b a)
9b a 6|b al5 6[b al5 6|b F »lal|5
10b a -
11 b $ $1|6 $|6) $16

Backward Search on LF-interval Graphs :
Find SA-interval [s,t] of pattern P on L

« LF-interval graph is traversed as performed during the backward search in the BWT

* k: the first position on L such that L[k]=c holds for (i) a given character c in P
and (ii) a given SA-interval.

* u: the first node including position k on L in the repetition of u
« There are two important issues to be solved in backward search on LF-interval graph:

Q1: Which element d in the repetition of node u' on Vi corresponds to the
s'-th element on F, where s' = LF[k]?

Q2: Which node on V|, contains the s’-th element in L in the repetition?

Figure for Q1

Ve

U’\

a

d
s’=LF[k] —

a

©)

Vi

b

a
b

Figure for Q2

Ve

a

U’\

s’=LF[k] —

a

of

Backward Search on LF-interval Graphs :
Find SA-interval [s,t] of pattern P on L

Q1: Which element d in the repetition of node u' on V¢ corresponds

to the s'-th element on F, where s' = LF[k]? Figure for Q1
A1: Use the following property of LF-mapping: Ve Vi
Consecutive characters on u are mapped to consecutive ones U~ |2 b
onu’ ' a
d a
° i I i1) b
Thus, d is preserved in the two repetitions of nodes u and u S-LF—|® E, .

connected by an undirected edge

* The d-th element in the repetition of u’ on V- are computed X a
from the same d-th element in the repetition of u on V.

Backward Search on LF-interval Graphs :
Find SA-interval [s,t] of pattern P on L

Q2: Which node on V| contains the s’-th element in L in the
repetition?

A2: Use this fact: Such node must connect to u’ by a directed
edge in E; or E -

Let x be the node connected to u’ by a directed edge in E¢

A linear search starting from x on V, can find a node
including the s’-th element

Use array A, : which includes starting positions of the repetition of
each node on V,
Computation time: O(a)

 This efficiency is due to the number of nodes connected to U’
by directed edges being O(a)

Figure for Q2
Ve V,
U’ \ a ELF b/
a
< a
< b
s'=LF[k]—|(@) O

Compute suffix array SA[s] for the first position s

in SA-interval [s, 1]

 |dea : Leverage the property of LF-mapping: SA[LF[i]]=SA[i]-1

« Thus, we can compute SA[s’] for the first position s’ of
the next SA-interval [s’,1’] from SA[s] for the first position s of

the current SA-interval [s,1].

Ve A
. . / X
« Compute SA[s’] as follows: E Ee |
Case (i): If c=L[k] corresponds to the first character of ° a
the repetition of u, SA[s’] = SA uj -1 « b
) p- [S’] samp_rlU] S=LFIK —|@® Ol s
Case (ii): Otherwise, SA[s’] = SA[s] - 1 .
} E u
* Array SAsavp r : Sampled SA according to the starting position of b R
the repetition of each node in V, @k
- S

« The computation is valid because case (i) must hold at the
first iteration in the backward search.

Computing ®'-function : Given SA[i], it returns SA[i+1]

 |dea : (i) Build a partite graph that represents the relationship between input SA[i] and output
SA[i+1] and (ii) compute ®-'-function on the graph

Set of nodes SA., ., : Includes sampled SA according to the ending position of the repetition
for each node on V|

Set of nodes ©'(SAg,,,,) : Includes SA[i+1] if SA[i] is included in SAg, .,

Undirected edges E’, : An edge connecting SA., [i] to ®'(SAg,p)[]] indicates
O (SAsamp)[]] = SA[i+1] holds

Directed edges Eg, : Each position i in ®'(SA.,,,) is included within the interval of a node in

SAsamp.
SA Vi SAsamp D1 (SAgamp) SAsamp O (SAgamp) SAsamp O (SAsamp) SAsamp ErL O(SAgamp)
11 b1 11 1 1 = 1 1 e 1
3 3 > (ii)Build | 2 ’ P
) al12 iSampling |9 9 | (i)Sort 3 edges 3 3
6 b|3 6
4 5 S 5
2 2 6 6 « 6
10 al4d 10 7 7 7
7 7 8 8]
> als 5 9 9 9 9 9 e 9
3 3 10 10 10
1 $|6 | 1 11 11 < 11

Computing ®'-function : Given SA[i], it returns SA[i+1] (Cont.)

» For a given position i in SA-interval [s.,1], let u be the node on SAg,r that contains SA[I]
within the interval.

* Let v be the node connected to node u by an undirected edge in E’;
- O 1(SAJi]) is computed by leveraging the following property:

Each node in SAg,ye represents the consecutive SA’s values; The consecutive SA’s values
in each node are also mapped to ®'(SA.,,) as the same consecutive values.

 Can compute ®(SA[i]) as follows: ®(SA[i])=0"(SAgamp) [V]+(SA[i] = SAszmp[U])
=d

 Detail: The next u corresponding to the computed ©-'(SA[i]) is obtained using a linear search
on SAg.nmp, Starting from u’ connected to v by the directed edge in Eg, (O(a) time)

SAsamp o1 (SAsamp) SAsamp ERL o1 (SAsamp)
1 11 _v 1 |« 1
Y 1 Id >
41 13 / 3 Example for SA[i]=6:
LeonsAl) | L 5 u=3, v=1
SA[i]— 6 4 6 O1(6)=0" (SAsamp)[‘I]+(6'SAsamp[3])
7] =1+(6-3)
8 8 —
9 9 9 I¢) =4
10) 10
11) 11

Summary on Optimal-Time Backward Search and
Occurrence Position Recoveries on RLBWT

1. SA-interval computation: Compute interval [s,t] on L that corresponds to pattern P
O(IPI) time
2. Suffix array computation: Compute suffix array SA[s] for the first position s in [s,i]
O(IPI) time
3. ?comtj_rrence position recoveries: Recover occurrence positions of P in T using ®-7-
unction

« ®-1-function takes SA[i] and returns SA[i+1]
O(occ) time

* O(IPl+occ) time and O(r log n) bits of space

* Optima-Time Construction of RLBWT

Extension of BWT (Review)

« BWT L’ of string cT can be computed from the BWT L of string T throughout three steps.

(D Relace the special character $ on L by character ¢

@ Insert the special character $ into L at position k,
k is computed by the LF-formula:

« k=occ_(L,c)+rank(L,j,c) for j such that L[j]=$ holds
® Insert character c into F at position k
« Update time: O(log ITI)
» We will update LF-interval graphs by leveraging this extension.

i F’

T=baaababab$ i F L 18 It_)
c=a ; 2 E 2a b
3 a a 3 a a
Since L[8]=$ and j=8, 3 44 b k=5 4 a b
k=occ<(L,a)+rank(L,8,a) @7 5a b < ® g a g
=1 +4=5 6 a a - : .
7Db a
8 b $=a gg 2
9b a
10 b a 10D a
11 b a

LF-interval Graph and Additional Data Structures for
Extensions

» The following data structures are added for extensions

* Dg.: Each element represents the difference between (l|1) the starting position of the repetition of node u on
Ve and (ii) the starting position of the repetition of the node connected to u by the directed edge in Er_

* D, r: defined similarly to Dg,

» B-tree: used for identifying the insertion position of a new node on V:
It keeps key-value pairs
» key is a pair (c,v) for character ¢ and node v on V.
« Value is the node u on V¢ that is connected to v by an undirected edge in E
. %ivg,?\ \? k%y (c’,v’), B-tree returns value u associated to the maximum key (c,v) satisfying c<c’ or
=C’'A\V<V
» Order maintenance data structure for comparing nodes in \V,

* O(r’ log n) bits of space in total (r’: number of nodes)

i E L Ve V. Ve E, A Ve Ef,Er V. Dre D
1$ b 1[$ b1 1[$ b1 1[§}———{b]A 0 0
2 a b 2| a b2 a b |2 al b |2 0 0
3a a 3| a al3 3| a a|3 3lal al3 0 0
4 a b b4 b |4 < b |4 1
5 a b 4| a 4| a 4| a 1

6 a a alb5 ald als 1
7 b a 5| b 5|b 5| b 1

8b $ 6 b $ 6 6[b $l6 6[bf $ e 0 0
9b a 7| b al7 7| b al7 7|b ¢ Hal7 0 0
10b a

WnN =

N O O

Construction of RLBWT: Realizing the extension of
BWT on LF-interval Graph

(D Replace-node: (i) The node labeled $ on V, is replaced by a new node labeled c; (ii) A new
node labeled c is inserted into an appropriate position on V- (O(1) or O(log r) time)

(2) Insert-node: A new node labeled $ is inserted into an appropriate position on V, (O(a) time)

3 Merge-node: If newly inserted nodes are adjacent to nodes with the same labels, they
are merged (O(1) time)

(4 Update-edge: Edges are updated appropriately. (O(a?) time)
(5 Split-node: Any node with at least a directed edges is split. (O(ar) time)
. Steps @, @ and ® are detailed in the following slides.

(DReplace-node @lnsert-node (®Merge-node @Update-edge ®Split-node
Ey Vi Ve Ey Vi Ve Eu Vi Ve Eu Vi Ve Eu,ErLEle VI Ve EqLEF VL
b|1 1[$ b]1 1S b1 1[$ b]1 1S b1 1[5 ——]p |1
bl2 2|a bl2 2|a bl2 2|a bl2 2|a b |2 2lafF—— b |2
al3 3la al3 3|a al3 3|a al3 3la a|3 3| a al3
b (4 b (4 b [4 b |4 ¢ / b |4 « b |4
4] a 4] a $15 $15 :\\/// $15 4] a |+ $15
als5 5|a al5 b5la b |6 b |6 < b |6 5/ a b l6
al7s al7s al7s —al7

$|6 6[b ale 6|b]| 4 b 4{b |/ g 6l b >
al7z 7[b] al7 7|b] alg8 5[b 5b////\‘§ 7l o als
8| b 8| b al|l9 6]b 6b'/ > 8l b alo

9 b 7| b 7|by > 9l b

(DReplace-node: (i) The node labeled $ on V, is replaced
by a new node labeled c; (ii) A new node labeled c is
inserted into an appropriate position on Vi

* How can we compute the position on V-? There are two cases:

Case (U: the new node v on V, has the same label as either or both of adjacent nodes

If the node is adjacent to the node v above and has the same label as v, the insertion
position is below the node connected to v by an undirected edge in Ej.

The other case is similarly computed. (O(1) time)
Case (2): The insertion position is computed using B-tree. (O(log r) time)

Case D: c=a Case (@: c=b
Ve Ey Vi Ve E, V, Ve Ey A
113 b | 1 1% b1 1% b1
2| a bl2 2| a b |2 2] a bl2
3| a al3 3[3 213 3| a al3
bl|4 b |4 b |4

4f a 42 4| a
ald 5 a als als

5]b 5|b
6[b $|6 6l b al6 6| b b |6
7| b al7 7o al7 7|b al7

8l b a5

(@lnsert-node: Insert a new node labeled $ into an
appropriate position on V,

» Let v’ be the node on V, that includes the position of the inserted character c on V¢
(D Vv’is then split

2 anew node labeled $ is inserted between the split nodes.

« Computation time: O(a)

@ Split of v’ 2 Insertion of $
Ve Eu Vo Ve EEr VL Ve E,,Eq. VL
19 b |1 1§ b |1 1§ b1
2| a b |2 za\ébz 2| a b |2
3| a a|3 3l a ald v 3| a a|3
b (4 b [4 b |4
41 a 4| a b 4] a $|5
5] a alb 5] a als 5] a b |6
al7
6b{ al6 6|b{ ale 6| b
7| b al7 7o al7 7| b als
8| b 8l b 8| b al9
b 9]b

(5)Split-node: Any node with directed edges
more than a (a-heavy) is split.

« Splitting nodes continues until the number of directed edges connected to each node
IS N0 more than a.

« Computation time per split: O(a)
» The total number of split nodes: O(r)

Reason:
- The number of directed edges after m splits of nodes is at least |a/2]m.

- Meanwhile, the number of directed edges after m splits of nodes is r + 2m.
- Solving |a/2|m = r+2m yields m=0(r) for a=16.

N
%

Q|T|eL|T|D |T|T
NO o h~OWN =

Q

Ve EGErLEF VL Ve Eu.ErLELr VL Ve Eu.ErLELr VL
a-heavy 119 b |1 11$ b |1 _ 1['$
(a=3) 2l a bl2 Split 2[a bl2 Split 2[a
Baf X/a3 3ai X/a3 3a4 7
/AR /AR s
a
NS b |6 4a}‘v/// b |6 5a=\v///
al7 al7
4
5
6 ,
7

O|T|T|T
\\\\
v v A
00 N O O
O|TO|T|T
pa
(00)
O 00N O
O|T|T|T

Q

O

Experimental Results on A Large Dataset

« R-comp (this study) is compared to Dataset
1. PP: A.Policriti and N.Prezza, 2018 _
2. Faster-PP: T. Ohno et al., 2018. boost 1,073,769
enwiki 207 37,849,201 70,190
chr19.1000 5 59,125,169 45,143

: Execution Time of RLBWT Construction Algorithms Memory Usage of RLBWT Construction Algorithms
10 Method >24h0u rS

Method
BN r-comp Il r-com
W= Faster-PP Emm Faster-PP method
104 ,,,,,,,,,,, | . .
103 ,,,,,,,,,,, | . | .
10°-

Time (seconds)
Size (MiB)
=
Y

=
o
-

+ kv o
3 = S
o < ° S 2 S
0 = o Keo] O 1
8 = o 2
o) 5 '_' [-
[e)] <
r:| (@]

£ Dataset

Dataset

Summary on Optimal-Time Construction of
RLBWT

« Construction time for string T at each step is summarized as follows:
Replace-node: O(ITI+r log r)

Insert-node: O(ITla)

Merge-node: O(ITla)

Update-edge: O(ITla?)

Split-node: O(ra)

©® O

» Total construction time: O(ITla?+ra log r)
« O(ITI) time holds for constant a and r = | Tl/loglTI (satisfied for strings with many repetitions!)
* O(r loglTl) bits of space (because the total number of split nodes is O(r))

Summary of This Talk

We have presented optimal-time queries and constructions of RLBWT in BWT-runs
Bounded Space

A key element is an efficient bipartite graph representation called LF-interval graph in
RLBWT.

Backward search and occurrence position recoveries
« Complexity: O(IPl+occ) time and O(r log ITI) bits of space

Construction
« Complexity: O(I'TI) time and O(r log I'Tl) bits of space

« Take-home message from this talk:
Bipartite graphs are useful for efferently representing LF-mapping in BWT!

