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Optimal-Time Queries and Constructions RLBWT 
in BWT-runs Bounded Space
• A summary of two papers presented at ICALP

• 2021: Optimal-Time Queries on BWT-runs Compressed 
Indexes

• 2022: An Optimal-Time RLBWT Construction in BWT-
Runs Bounded Space

• A key element common to both papers is an efficient bipartite graph representation called 
LF-interval graph in RLBWT.

• Structure of the Talk:
• First Half: Focus on Queries
• Second Half: Focus on Constructions



Main Topic: Compressed Information Processing of 
Strings with Many Repetitions
• Recently, strings characterized by many repetitions have become widespread in both 

research and industrial applications.
Ex: Genome sequences, version-controlled documents, and more

• Compressed information processing of these repetitive strings is a central research topic 
in string processing. 

• Several formats have been developed for this type of data, including grammars and LZ-
type compressions.

• We focus on RLBWT, a run-length compressed version of Burrows-Wheeler Transform 
(BWT) in this talk.



The Burrows-Wheeler Transform (BWT): 
A permutation of a string T created by sorting all the circular shifts of T
and taking the last column L of the resulting matrix.
• Key feature of BWT: Identical characters tend to cluster together, facilitating a compression
• LF mapping: 

LF[i] = (the number of characters smaller than L[i] in F) + (the rank of L[i] at position i in L)
• LF[i] returns the position in the sorted circular shifts of T obtained 

by moving the last character of the i-th circular shift to its beginning
• Property of LF:  (A) it defines a one-to-one correspondence between column L and column F
(B) It maps positions with consecutive characters in L to the consecutive positions in F

(i.e., if L[i]=L[i+1], then LF[i+1]=LF[i]+1 holds)
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Backward Search Using LF-mapping : 
Find the SA-interval [s,t] of pattern P on L

① Initialize [s,t] = [1,|L|] and h = |P|
② Find the first and last occurrence positions [k,ℓ] of character P[h] in the interval [s,t] on L

- Rank and select on L are used for computing [k,ℓ]
③ Compute s’=LF[k] and t’=LF[ℓ] using LF-mapping 

• Every element j ∈ [s’,t’] satisfies the condition that suffix P[h..|P|] is a prefix of suffix T[SA[ j ]..|T|]
④ Update s=s’, t=t’, h=h–1, and go to step① if s ≦ t or h>0 hold
• Complexity: O(|P| log σ) time and O(|T| log σ) bits of space (σ : alphabet size)
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Recovery of Occurrence Positions of Pattern P in T
Using Suffix Array
• Backward search determines the SA-interval [s,t] on L that corresponds to pattern P.
• Once [s,t] is established, the positions of P in T can be computed using the suffix array SA.
- p = SA[ j ] for j∈{s,s+1,…,t}
• Implementation detail: Suffix array is sampled and kept in memory for space efficiency
• If |T|/log|T| positions are sampled, O(occ logσ log|T|) time and O(|T|) bits of space are 

used.
(σ: alphabet size, occ: number of occurrences of P in T)

[s,t]=[4,6] : 
Interval of P=aba on L
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Run-Length Encoded BWT (RLBWT)
• BWT L=bbabbbaaaa$   → RLBWT L’=b2a1b3a4$1
• A run is defined as the maximum repetition of the same character.
• Key Property: The BWT’s ability to cluster the identical characters makes the run-length 

encoding particularly effective
• This property will significantly improve compression ratios.
• Actually, RLBWT is particularly effective for highly repetitive strings
Ex: 1,000 human genomes of chromosome 19 (60GB) can be compressed 

to a size of 250MB

• Technical Challenge : How can we realize backward search on RLBWT and occurrence 
position recoveries within the compressed size of RLBWT?



Previous Result: Backward Search and Occurrence Position 
Recoveries on RLBWT [T.Gagie, G.Navarro, N.Prezza, SODA’18, J.ACM’20]

• The researchers introduced the following three steps: 
1. SA-interval computation: Compute SA-interval [s,t] on L that corresponds to pattern P 

• O(|P|loglog(|T|/r)) time
2. Suffix array computation: Compute suffix array SA[s] for the first position s in [s,t] 

• O(|P| loglog(|T|/r)) time
3. Occurrence position recoveries: Recover occurrence positions of P in T using Φ-1-function

• Φ-1-function takes SA[i] and returns SA[i+1]
• O(occ loglog(|T|/r)) time

• Space: O (r log |T|) bits (r: number of runs in T)
• Time: O((|P| + occ)loglog(|T|/r)) is not optimal (i.e., O(|P|+occ)).

(occ: the number of occurrences of P in T)
• This arises due to the use of the predecessor data structure for computing LF-mappings 

and φ-1-functions.

• We will improve each of these three steps by introducing a novel data structure, 
achieving O(|P|+occ) time and O(r log |T|) bits of space.



LF-interval Graph: A bipartite graph representing
LF-mapping on BWT

• The structure consists of two sets of nodes and two types of edges 
(I) Sets of nodes VF,VL: Each node in VF and VL represents a repetition in F and L, respectively.
(II) A set of undirected edges EU: Represent LF-mapping between repetitions in nodes.
(III) Sets of directed edges EFL, ELF: Each edge in EFL indicates the starting position of a 

repetition in VF is included within the interval of the repetition of a node in VL. 
• ELF is defined similarly.

• Two key properties of LF-interval graph:
1. The number of nodes r’ is bounded by O(r) (r: the number of runs in T)
2. α-heavyness: The number of directed edges connecting to each node is bounded by O(α) (α: constant)
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Backward Search on LF-interval Graphs : 
Find SA-interval [s,t] of pattern P on L
• LF-interval graph is traversed as performed during the backward search in the BWT
• k: the first position on L such that L[k]=c holds for (i) a given character c in P

and (ii) a given SA-interval. 
• u: the first node including position k on L in the repetition of u
• There are two important issues to be solved in backward search on LF-interval graph: 
Q1: Which element d in the repetition of node u' on VF corresponds to the 

s'-th element on F, where s' = LF[k]?
Q2: Which node on VLcontains the s’-th element in L in the repetition? 
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Backward Search on LF-interval Graphs : 
Find SA-interval [s,t] of pattern P on L 

Q1: Which element d in the repetition of node u' on VF corresponds  
to the s'-th element on F, where s' = LF[k]?

A1: Use the following property of LF-mapping: 
Consecutive characters on u are mapped to consecutive ones 
on u’

• Thus, d is preserved in the two repetitions of nodes u and u’ 
connected by an undirected edge

• The d-th element in the repetition of u’ on VF are computed 
from the same d-th element in the repetition of u on VL
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Backward Search on LF-interval Graphs : 
Find SA-interval [s,t] of pattern P on L 

Q2: Which node on VL contains the s’-th element in L in the 
repetition?

A2: Use this fact: Such node must connect to u’ by a directed 
edge in EFL or ELF. 

• Let x be the node connected to u’ by a directed edge in EFL

• A linear search starting from x on VL can find a node 
including the s’-th element 

• Use array AL : which includes starting positions of the repetition of 
each node on VL

• Computation time: O(α) 
• This efficiency is due to the number of nodes connected to u’ 

by directed edges being O(α)
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Compute suffix array SA[s] for the first position s 
in SA-interval [s,t] 

• Idea : Leverage the property of LF-mapping: SA[LF[i]]=SA[i]-1
• Thus, we can compute SA[s’] for the first position s’ of

the next SA-interval [s’,t’] from SA[s] for the first position s of 
the current SA-interval [s,t].

• Compute SA[s’] as follows: 
Case (i): If c=L[k] corresponds to the first character of 

the repetition of u, SA[s’] = SASAMP_F[u] - 1
Case (ii): Otherwise, SA[s’] = SA[s] - 1
• Array SASAMP_F : sampled SA according to the starting position of 

the repetition of each node in VL

• The computation is valid because case (i) must hold at the 
first iteration in the backward search. 
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Computing Φ-1-function : Given SA[i], it returns SA[i+1] 
• Idea : (i) Build a partite graph that represents the relationship between input SA[i] and output 

SA[i+1] and (ii) compute Φ-1-function on the graph
• Set of nodes SAsamp : Includes sampled SA according to the ending position of the repetition 

for each node on VL

• Set of nodes Φ-1(SAsamp) : Includes SA[i+1] if SA[i] is included in SAsamp

• Undirected edges E’U : An edge connecting SAsamp[ i ]  to Φ-1(SAsamp)[ j ] indicates
Φ-1(SAsamp)[ j ] = SA[i+1] holds

• Directed edges ERL : Each position i in Φ-1(SAsamp) is included within the interval of a node in 
SAsamp.
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Computing Φ-1-function : Given SA[i], it returns SA[i+1] (Cont.) 
• For a given position i in SA-interval [s,t], let u be the node on SASAMP that contains SA[i] 

within the interval.
• Let v be the node connected to node u by an undirected edge in E’U
• Φ-1(SA[i]) is computed by leveraging the following property: 

Each node in SASAMP represents the consecutive SA’s values; The consecutive SA’s values   
in each node are also mapped to Φ-1(SAsamp) as the same consecutive values. 

• Can compute Φ-1(SA[i]) as follows: Φ-1(SA[i])=Φ-1(SAsamp)[v]+(SA[i] − SAsamp[u])

• Detail: The next u corresponding to the computed Φ-1(SA[i]) is obtained using a linear search 
on SAsamp, starting from u’ connected to v by the directed edge in ERL (O(α) time)
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Summary on Optimal-Time Backward Search and 
Occurrence Position Recoveries on RLBWT 

1. SA-interval computation: Compute interval [s,t] on L that corresponds to pattern P 
• O(|P|loglog(n/r)) time → O(|P|) time

2. Suffix array computation: Compute suffix array SA[s] for the first position s in [s,t] 
• O(|P| loglog(n/r)) time → O(|P|) time

3. Occurrence position recoveries: Recover occurrence positions of P in T using Φ-1-
function
• Φ-1-function takes SA[i] and returns SA[i+1]
• O(occ loglog(n/r)) time → O(occ) time

• O(|P|+occ) time and O(r log n) bits of space 



•Optima-Time Construction of RLBWT



Extension of BWT (Review)  
• BWT L’ of string cT can be computed from the BWT L of string T throughout three steps.
① Relace the special character $ on L by character c
② Insert the special character $ into L at position k, 

k is computed by the LF-formula:
• k=occ<(L,c)+rank(L,j,c) for j such that L[j]=$ holds

③ Insert character c into F at position k
• Update time: O(log |T|)  
• We will update LF-interval graphs by leveraging this extension.
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LF-interval Graph and Additional Data Structures for 
Extensions
• The following data structures are added for extensions
• DFL: Each element represents the difference between (i) the starting position of the repetition of node u on 

VF and (ii) the starting position of the repetition of the node connected to u by the directed edge in EFL

• DLF: defined similarly to DFL

• B-tree: used for identifying the insertion position of a new node on VF
• It keeps key-value pairs
• key is a pair (c,v) for character c and node v on VL
• Value is the node u on VF that is connected to v by an undirected edge in EU
• Given a key (c’,v’), B-tree returns value u associated to the maximum key (c,v) satisfying c<c’ or

(c=c’∧v≤v’)
• Order maintenance data structure for comparing nodes in VL 

• O(r’ log n) bits of space in total (r’: number of nodes)
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Construction of RLBWT: Realizing the extension of 
BWT on LF-interval Graph
① Replace-node: (i) The node labeled $ on VL is replaced by a new node labeled c; (ii) A new 

node labeled c is inserted into an appropriate position on VF (O(1) or O(log r) time)
② Insert-node: A new node labeled $ is inserted into an appropriate position on VL (O(α) time)
③ Merge-node: If newly inserted nodes are adjacent to nodes with the same labels, they 

are merged (O(1) time)
④ Update-edge: Edges are updated appropriately. (O(α2) time)
⑤ Split-node: Any node with at least α directed edges is split. (O(αr) time)
• Steps ①, ② and ⑤ are detailed in the following slides.
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①Replace-node: (i) The node labeled $ on VL is replaced 
by a new node labeled c; (ii) A new node labeled c is 
inserted into an appropriate position on VF
• How can we compute the position on VF? There are two cases: 
• Case ①: the new node v on VL has the same label as either or both of adjacent nodes 
• If the node is adjacent to the node v above and has the same label as v, the insertion 

position is below the node connected to v by an undirected edge in EU. 
• The other case is similarly computed. (O(1) time)
• Case②: The insertion position is computed using B-tree. (O(log r) time)
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②Insert-node: Insert a new node labeled $ into an 
appropriate position on VL

• Let v’ be the node on VL that includes the position of the inserted character c on VF

① v’ is then split
② a new node labeled $ is inserted between the split nodes.
• Computation time: O(α) 
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⑤Split-node: Any node with directed edges 
more than α (α-heavy) is split. 

• Splitting nodes continues until the number of directed edges connected to each node 
is no more than α.

• Computation time per split: O(α)
• The total number of split nodes: O(r)
Reason:
・The number of directed edges after m splits of nodes is at least ⌊α/2⌋m.
・Meanwhile, the number of directed edges after m splits of nodes is r + 2m. 
・Solving ⌊α/2⌋m ≤ r+2m yields m=O(r) for α≥16.
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Experimental Results on A Large Dataset
Dataset
String σ |T| [103] r [103]
boost 96 1,073,769 65
enwiki 207 37,849,201 70,190
chr19.1000 5 59,125,169 45,143

• R-comp (this study) is compared to
1. PP: A.Policriti and N.Prezza, 2018
2. Faster-PP: T. Ohno et al., 2018.

>24hours
10GB



Summary on Optimal-Time Construction of 
RLBWT
• Construction time for string T at each step is summarized as follows:
① Replace-node: O(|T|+r log r)  
② Insert-node: O(|T|α) 
③ Merge-node: O(|T|α) 
④ Update-edge: O(|T|α2) 
⑤ Split-node: O(rα) 

• Total construction time: O(|T|α2+rα log r) 
• O(|T|) time holds for constant α and r = |T|/log|T| (satisfied for strings with many repetitions!)
• O(r log|T|) bits of space (because the total number of split nodes is O(r))



Summary of This Talk 
• We have presented optimal-time queries and constructions of RLBWT in BWT-runs 

Bounded Space
• A key element is an efficient bipartite graph representation called LF-interval graph in 

RLBWT.

• Backward search and occurrence position recoveries
• Complexity: O(|P|+occ) time and O(r log |T|) bits of space 

• Construction
• Complexity: O(|T|) time and O(r log |T|) bits of space

• Take-home message from this talk: 
Bipartite graphs are useful for efferently representing LF-mapping in BWT!


