CPM2024-hightlight

June 27, 2024

Optimal-Time Queries and Constructions of RLBWT in BWT-runs Bounded Space

Yasuo Tabei

Collaboration with

Takaaki Nishimoto and Shunsuke Kanda RIKEN-AIP (https://aip.riken.jp/)

Optimal-Time Queries and Constructions RLBWT in BWT-runs Bounded Space

- A summary of two papers presented at ICALP
 - 2021: Optimal-Time Queries on BWT-runs Compressed Indexes
 - 2022: An Optimal-Time RLBWT Construction in BWT-Runs Bounded Space
- A key element common to both papers is an efficient bipartite graph representation called LF-interval graph in RLBWT.
- Structure of the Talk:
 - First Half: Focus on Queries
 - Second Half: Focus on Constructions

Main Topic: Compressed Information Processing of Strings with Many Repetitions

• Recently, strings characterized by many repetitions have become widespread in both research and industrial applications.

Ex: Genome sequences, version-controlled documents, and more

- Compressed information processing of these repetitive strings is a central research topic in string processing.
- Several formats have been developed for this type of data, including grammars and LZtype compressions.
- We focus on RLBWT, a run-length compressed version of Burrows-Wheeler Transform (BWT) in this talk.

The Burrows-Wheeler Transform (BWT):

A permutation of a string T created by sorting all the circular shifts of T and taking the last column L of the resulting matrix.

• Key feature of BWT: Identical characters tend to cluster together, facilitating a compression

• LF mapping:

LF[i] = (the number of characters smaller than L[i] in F) + (the rank of L[i] at position i in L)

One-to-one

- LF[i] returns the position in the sorted circular shifts of T obtained by moving the last character of the i-th circular shift to its beginning
- Property of LF: (A) it defines a one-to-one correspondence between column L and column F

(B) It maps positions with consecutive characters in L to the consecutive positions in F (i.e., if L[i]=L[i+1], then LF[i+1]=LF[i]+1 holds)

Backward Search Using LF-mapping : Find the SA-interval [s,t] of pattern P on L

- (1) Initialize [s,t] = [1,ILI] and h = IPI
- ② Find the first and last occurrence positions $[k, \ell]$ of character P[h] in the interval [s,t] on L
 - Rank and select on L are used for computing $[k, \ell]$
- ③ Compute s'=LF[k] and t'=LF[ℓ] using LF-mapping
 - Every element $j \in [s',t']$ satisfies the condition that suffix P[h..IPI] is a prefix of suffix T[SA[j]..ITI]
- ④ Update s=s', t=t', h=h-1, and go to step 1 if $s \leq t$ or h>0 hold
- Complexity: O(IPI log σ) time and O(ITI log σ) bits of space (σ : alphabet size)

Recovery of Occurrence Positions of Pattern P in T Using Suffix Array

- Backward search determines the SA-interval [s,t] on L that corresponds to pattern P.
- Once [s,t] is established, the positions of P in T can be computed using the suffix array SA.
- p = SA[j] for j \in {s,s+1,...,t}
- Implementation detail: Suffix array is sampled and kept in memory for space efficiency
- If ITI/logITI positions are sampled, O(occ logσ logITI) time and O(ITI) bits of space are used.

(σ : alphabet size, occ: number of occurrences of P in T)

Run-Length Encoded BWT (RLBWT)

- BWT L=bbabbbaaaa $\rightarrow RLBWT L'=b2a1b3a4$
- A run is defined as the maximum repetition of the same character.
- Key Property: The BWT's ability to cluster the identical characters makes the run-length encoding particularly effective
- This property will significantly improve compression ratios.
- Actually, RLBWT is particularly effective for highly repetitive strings
- Ex: 1,000 human genomes of chromosome 19 (60GB) can be compressed to a size of 250MB
- Technical Challenge : How can we realize backward search on RLBWT and occurrence position recoveries within the compressed size of RLBWT?

Previous Result: Backward Search and Occurrence Position Recoveries on RLBWT [T.Gagie, G.Navarro, N.Prezza, SODA'18, J.ACM'20]

- The researchers introduced the following three steps:
- 1. SA-interval computation: Compute SA-interval [s,t] on L that corresponds to pattern P
 - O(IPIloglog(ITI/r)) time
- 2. Suffix array computation: Compute suffix array SA[s] for the first position s in [s,t]
 - O(IPI loglog(ITI/r)) time
- 3. Occurrence position recoveries: Recover occurrence positions of P in T using Φ^{-1} -function
 - Φ⁻¹-function takes SA[i] and returns SA[i+1]
 - O(occ loglog(ITI/r)) time
- Space: O (r log ITI) bits (r: number of runs in T)
- Time: O((IPI + occ)loglog(ITI/r)) is not optimal (i.e., O(IPI+occ)). (occ: the number of occurrences of P in T)
- This arises due to the use of the predecessor data structure for computing LF-mappings and $\varphi^{\text{-1}}$ -functions.
- We will improve each of these three steps by introducing a novel data structure, achieving O(IPI+occ) time and O(r log ITI) bits of space.

LF-interval Graph: A bipartite graph representing LF-mapping on BWT

- The structure consists of two sets of nodes and two types of edges
- (I) Sets of nodes V_F, V_L : Each node in V_F and V_L represents a repetition in F and L, respectively.

(II) A set of undirected edges E_{U} : Represent LF-mapping between repetitions in nodes.

- (III) Sets of directed edges E_{FL} , E_{LF} : Each edge in E_{FL} indicates the starting position of a repetition in V_F is included within the interval of the repetition of a node in V_L .
 - E_{LF} is defined similarly.
- Two key properties of LF-interval graph:
 - 1. The number of nodes r' is bounded by O(r) (r: the number of runs in T)
 - 2. α -heavyness: The number of directed edges connecting to each node is bounded by $O(\alpha)$ (α : constant)

Backward Search on LF-interval Graphs : Find SA-interval [s,t] of pattern P on L

- LF-interval graph is traversed as performed during the backward search in the BWT
- k: the first position on L such that L[k]=c holds for (i) a given character c in P and (ii) a given SA-interval.
- u: the first node including position k on L in the repetition of u
- There are two important issues to be solved in backward search on LF-interval graph:
- Q1: Which element d in the repetition of node u' on V_F corresponds to the s'-th element on F, where s' = LF[k]?

Q2: Which node on V_L contains the s'-th element in L in the repetition?

Backward Search on LF-interval Graphs : Find SA-interval [s,t] of pattern P on L

Q1: Which element d in the repetition of node u' on V_F corresponds to the s'-th element on F, where s' = LF[k]?

A1: Use the following property of LF-mapping:

Consecutive characters on **u** are mapped to consecutive ones on **u**'

- Thus, d is preserved in the two repetitions of nodes u and u' connected by an undirected edge
- The d-th element in the repetition of u' on V_F are computed from the same d-th element in the repetition of u on V_L

Backward Search on LF-interval Graphs : Find SA-interval [s,t] of pattern P on L

Q2: Which node on V_L contains the s'-th element in L in the repetition?

- A2: Use this fact: Such node must connect to u' by a directed edge in E_{FL} or E_{LF} .
- Let x be the node connected to u' by a directed edge in E_{FL}
- A linear search starting from x on V_L can find a node including the s'-th element
- Use array A_L : which includes starting positions of the repetition of each node on V_L
- Computation time: O(α)
 - This efficiency is due to the number of nodes connected to u' by directed edges being $O(\alpha)$

Compute suffix array SA[s] for the first position s in SA-interval [s,t]

- Idea : Leverage the property of LF-mapping: SA[LF[i]]=SA[i]-1
- Thus, we can compute SA[s'] for the first position s' of the next SA-interval [s',t'] from SA[s] for the first position s of the current SA-interval [s,t].
- Compute SA[s'] as follows:
- Case (i): If c=L[k] corresponds to the first character of the repetition of u, $SA[s'] = SA_{SAMP_F}[u] - 1$
- Case (ii): Otherwise, SA[s'] = SA[s] 1
- Array SA_{SAMP_F} : sampled SA according to the starting position of the repetition of each node in V_L
- The computation is valid because case (i) must hold at the first iteration in the backward search.

Computing Φ⁻¹-function : Given SA[i], it returns SA[i+1]

- Idea : (i) Build a partite graph that represents the relationship between input SA[i] and output SA[i+1] and (ii) compute Φ⁻¹-function on the graph
- Set of nodes SA_{samp} : Includes sampled SA according to the ending position of the repetition for each node on V_L
- Set of nodes Φ⁻¹(SA_{samp}) : Includes SA[i+1] if SA[i] is included in SA_{samp}
- Undirected edges E'_U : An edge connecting $SA_{samp}[i]$ to $\Phi^{-1}(SA_{samp})[j]$ indicates $\Phi^{-1}(SA_{samp})[j] = SA[i+1]$ holds
- Directed edges E_{RL} : Each position i in $\Phi^{-1}(SA_{samp})$ is included within the interval of a node in SA_{samp} .

Computing Φ⁻¹-function : Given SA[i], it returns SA[i+1] (Cont.)

- For a given position i in SA-interval [s,t], let u be the node on SA_{SAMP} that contains SA[i] within the interval.
- Let v be the node connected to node u by an undirected edge in E'_{U}
- Φ⁻¹(SA[i]) is computed by leveraging the following property:

Each node in SA_{SAMP} represents the consecutive SA's values; The consecutive SA's values in each node are also mapped to $\Phi^{-1}(SA_{samp})$ as the same consecutive values.

- Can compute Φ⁻¹(SA[i]) as follows: Φ⁻¹(SA[i])=Φ⁻¹(SA_{samp})[v]+(SA[i] SA_{samp}[u]) =d
- Detail: The next u corresponding to the computed Φ⁻¹(SA[i]) is obtained using a linear search on SA_{samp}, starting from u' connected to v by the directed edge in E_{RL} (O(α) time)

Summary on Optimal-Time Backward Search and Occurrence Position Recoveries on RLBWT

- SA-interval computation: Compute interval [s,t] on L that corresponds to pattern P
 O(IPIloglog(n/r)) time → O(IPI) time
- 2. Suffix array computation: Compute suffix array SA[s] for the first position s in [s,t]
 - $O(IPI \ loglog(n/r)) \ time \rightarrow O(IPI) \ time$
- 3. Occurrence position recoveries: Recover occurrence positions of P in T using Φ^{-1} -function
 - Φ^{-1} -function takes SA[i] and returns SA[i+1]
 - O(occ loglog(n/r)) time \rightarrow O(occ) time
- O(IPI+occ) time and O(r log n) bits of space

Optima-Time Construction of RLBWT

Extension of BWT (Review)

- BWT L' of string cT can be computed from the BWT L of string T throughout three steps.
- ① Relace the special character \$ on L by character c
- Insert the special character \$ into L at position k, k is computed by the LF-formula:
 - k=occ_<(L,c)+rank(L,j,c) for j such that L[j]=\$ holds
- \bigcirc Insert character c into F at position k
- Update time: O(log ITI)
- We will update LF-interval graphs by leveraging this extension.

LF-interval Graph and Additional Data Structures for Extensions

- The following data structures are added for extensions
- D_{FL}: Each element represents the difference between (i) the starting position of the repetition of node u on V_F and (ii) the starting position of the repetition of the node connected to u by the directed edge in E_{FL}
- D_{LF}: defined similarly to D_{FL}
- B-tree: used for identifying the insertion position of a new node on V_F
 - It keeps key-value pairs
 - key is a pair (c,v) for character c and node v on V_L
 - Value is the node u on V_F that is connected to v by an undirected edge in E_U
 - Given a key (c',v'), B-tree returns value u associated to the maximum key (c,v) satisfying c<c' or (c=c'∧v≤v')
- Order maintenance data structure for comparing nodes in $\ensuremath{\mathsf{V}}_{\ensuremath{\mathsf{L}}}$
- O(r' log n) bits of space in total (r': number of nodes)

Construction of RLBWT: Realizing the extension of BWT on LF-interval Graph

- 1 Replace-node: (i) The node labeled \$ on V_L is replaced by a new node labeled c; (ii) A new node labeled c is inserted into an appropriate position on V_F (O(1) or O(log r) time)
- 2 Insert-node: A new node labeled \$ is inserted into an appropriate position on V_L (O(α) time)
- 3 Merge-node: If newly inserted nodes are adjacent to nodes with the same labels, they are merged (O(1) time)
- 4 Update-edge: Edges are updated appropriately. (O(α^2) time)
- 5 Split-node: Any node with at least α directed edges is split. (O(α r) time)
- Steps (1), (2) and (5) are detailed in the following slides.

(1) Replace-node: (i) The node labeled \$ on V_L is replaced by a new node labeled c; (ii) A new node labeled c is inserted into an appropriate position on V_F

- How can we compute the position on V_F ? There are two cases:
- Case 1: the new node v on V_L has the same label as either or both of adjacent nodes
- If the node is adjacent to the node v above and has the same label as v, the insertion
 position is below the node connected to v by an undirected edge in E_U.
- The other case is similarly computed. (O(1) time)
- Case 2: The insertion position is computed using B-tree. (O(log r) time)

②Insert-node: Insert a new node labeled \$ into an appropriate position on V_L

- Let v' be the node on V_L that includes the position of the inserted character c on V_F
- 1 v' is then split
- 2 a new node labeled \$ is inserted between the split nodes.
- Computation time: O(α)

⁵Split-node: Any node with directed edges more than α (α-heavy) is split.

- Splitting nodes continues until the number of directed edges connected to each node is no more than α .
- Computation time per split: O(α)
- The total number of split nodes: O(r)

Reason:

- · The number of directed edges after m splits of nodes is at least $\lfloor \alpha/2 \rfloor$ m.
- Meanwhile, the number of directed edges after m splits of nodes is r + 2m.
- Solving $\lfloor \alpha/2 \rfloor m \leq r+2m$ yields m=O(r) for $\alpha \geq 16$.

Experimental Results on A Large Dataset

- R-comp (this study) is compared to
 1. PP: A.Policriti and N.Prezza, 2018
- 2. Faster-PP: T. Ohno et al., 2018.

Dataset

String	σ	ITI [10 ³]	r [10 ³]
boost	96	1,073,769	65
enwiki	207	37,849,201	70,190
chr19.1000	5	59,125,169	45,143

Summary on Optimal-Time Construction of RLBWT

- Construction time for string T at each step is summarized as follows:
- 1 Replace-node: O(ITI+r log r)
- 2 Insert-node: O(ITIa)
- 3 Merge-node: O(ITIα)
- 4 Update-edge: $O(ITI\alpha^2)$
- 5 Split-node: O(rα)
- Total construction time: O(ITla²+rα log r)
- O(ITI) time holds for constant α and r = |TI/log|TI (satisfied for strings with many repetitions!)
- O(r logITI) bits of space (because the total number of split nodes is O(r))

Summary of This Talk

- We have presented optimal-time queries and constructions of RLBWT in BWT-runs Bounded Space
- A key element is an efficient bipartite graph representation called LF-interval graph in RLBWT.
- Backward search and occurrence position recoveries
 - Complexity: O(IPI+occ) time and O(r log ITI) bits of space
- Construction
 - Complexity: O(ITI) time and O(r log ITI) bits of space
- Take-home message from this talk:

Bipartite graphs are useful for efferently representing LF-mapping in BWT!