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Today’s Talk

BlDifferential privacy algorithms and its applications

® Techniques
P Sensitivity analysis
P Bias reduction
» Multiple attributes
» k—anonymized differential privacy

® Applications

» Genome—wide association study
» Graph databases



Next Generation Sequencers (NGS)

B One of the greatest innovation ...

2,500,000

InN genome science j =
g 15000 1500000 ©
® Fast: .
»8Tbp / 1 day (Illumina NovaSeq X) hoto 500000
» ~60 individuals per day N I Rl
@ Cheap: T R

[Davis-Dusenbery, 2017]

»200-300 dollars per individual Genome Data Explosion

cf. Costed 3 billion dollars and 13 years in
the Human Genome Project (~2003)
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https://jp.illumina.com/systems/sequencing- https://nanoporetech.com/sites/default/files/s3/ and-services/sequel-system/latest- tech.com/products/instruments
platforms/novaseq-x-plus.html minion-usb.png system-release/ _info/22/



Clinical Sequencing for Precision (Personalized) Medicine

BEDiagnosis based on individual genomes .

@ Searching similar cases on DBs

¢ Al prediction Diagnosis system

NGS
data
analysis

Sequencing by

o eaetey

#l Attending
B doctor




A Concern on Precision Medicine

Bt utilizes highly sensitive data

®Including genomes of other people

-------------------------------------------------------------------------------------------------------------------------------
* .

Training/Searching A patient’s data
Very Diagnosis
sensitive System
database Recommendation

. -
------------------------------------------------------------------------------------------------------------------------------

Question N
7]

Can we assure that the
recommendation does not contain
any sensitive private information?




Example: Genotype Analysis using Pedigrees

B Probabilities of possible genotypes x of Ms. X n Allele |
€ From only the parent information: | ay ‘
» P(x = AA|D) = 1/4,P(x = Aa|®) = 1/2,P(x = aa|d) = 1/4 f(A: major a: minor)

@ Probabilities of children’ s genotypes under 3 possible cases SNP

» P(W|x = AA,y =aa) =0
» P(W|x = Aa,y = aa) = 1/16
» P(W|x =aa,y=aa)=1
B Hence P(x = AA) = 0,P(x = Aa) =1/9,P(x = aa) = 8/9

y @D: parents’ ...

Genotype of this
SNP is Aa (Hetero)

Spouse’s information Sensitive data
information
=) . to be protected
R ¥ children’ s Ge,io,;yi;sajor I~
: ‘ ‘ ‘ ‘ i information | Ae:Hetero
:\ aa aa aa a3 } aa: Minor homo

How secure is it to disclose the probabilities
(i.e., 0, 1/9, 8/9) to Ms. X?



E DNA Technical Terms

€ Chain polymer molecule composed of 4 types of nucleic acids:
A/T/C/G

B Chromosomes

€ DNA molecules in a cell
@ We have 23 pairs of chromosomes (1-22 and X/Y)

K SNPs (Single nucleotide polymorphisms)
@ Specific positions with single nucleotide variations

K Alleles
@ Type of the nucleic acid at the SNP

B Major/Minor Alleles

® The most common type of a SNP is called the major allele
& Other types are called minor alleles

B Genotypes

® Pair of alleles at the SNP

@ Called homozygous (or homo) if both alleles are the same
» major homo/minor homo

@ Called heterozygous (or hetero) otherwise




Example: Genotype Analysis using Pedigrees

B Probabilities of possible genotypes x of Ms. X n Allele |
€ From only the parent information: | ay ‘
» P(x = AA|D) = 1/4,P(x = Aa|®) = 1/2,P(x = aa|d) = 1/4 f(A: major a: minor)

@ Probabilities of children’ s genotypes under 3 possible cases SNP

» P(W|x = AA,y =aa) =0
» P(W|x = Aa,y = aa) = 1/16
» P(W|x =aa,y=aa)=1
B Hence P(x = AA) = 0,P(x = Aa) =1/9,P(x = aa) = 8/9

y @D: parents’ ...

Genotype of this
SNP is Aa (Hetero)

Spouse’s information Sensitive data
information
=) . to be protected
R ¥ children’ s Ge,io,;yi;sajor I~
: ‘ ‘ ‘ ‘ i information | Ae:Hetero
:\ aa aa aa a3 } aa: Minor homo

Is it OK to disclose the probabilities
(i.e., 0, 1/9, 8/9) to Ms. X?



It leaks much information!!

B Given:
@ Probabilities of Ms. X’ s possible genotypes are:
P(x = AA) =0,P(x = Aa) =1/9,P(x =aa) = 8/9.
B Only 3 possible cases (as below) exist, which means:

@ Her parents’ genotypes are revealed

& All the other genotypes are also be revealed, if she know her
husband’ s genotype

Aa Aa Aa Aa Aa Aa
Ms. X Ms. X Ms.

Aa . AA . aa .

aa aa aa aa “Aa ‘Aa ‘Aa Aa aa aa aa aa

Candidate 1 Candidate 2 Candidate 3




GWAS (Genome-Wide Association Study)

T. Shibuya

B Statistical analyses for finding important genes/SNPs/etc.

Case Control
AA Pan IV
Aa Phra Mpa
aa Paa n,,

| Case |Contro|

A Pa

Pa
Contingency Tables

ny

a n,

_—

[ [ \
[ | )
AA/Aa/aa (A: major a: minor)

SNPs/Variations/etc

GWAS Data

Contingency Tables

- Case-control table (2x2, 3x2, ...)
- Trio allele frequency table

Transmission

Chi-square Test

Fisher’s Test Cochran-Armitage Test disequilibrium | ©@®

TTTTT

test (TDT)

AR

/

Top k significant SNPs

|

Further evaluation



Statistics used in GWAS

BEINo problem to publish these statistics’?
‘Xz test Predictable? Case Control | Total
A @
> _ N(2a-m)* :
>X _ m(N—m) Total N/2 # N/2 N
® Fisher’ s independence test | uependents by case Contro Total
A < a b m
(™) o D
>p =4 (N)C Total N/2 N/2 N
m
@ Cochran—Armitage’ s trend test Cose | | Control[7] Total
> _ N(2m+n-2(2a+b))? 2A b d :
’X "~ N(4m+n)—(2m+n)?2 aa ¢ / D s \/ N-m-n
Total N/2 N/2 V N

® Top £ significant genes

Contingency Tables

P Output genes with the k largest test values



Differential Privacy [pwork 2006] Godel ';g:;’

ENoise addition strategy for preserving privacy
& Differential privacy is satisfied if:

One entry difference
(|nsertlon/deletlon/update)

Database D - dl
— \_____¥“¥__444/ Probability Densit:

Noise-added analysis

based on DP

ﬁ Result M(D’)

M(D) and M(D’) is
probabilistically indistinguishable.

Database D’

Result M(D)

Any kind of results
(Statistics, prediction result, etc)




e-Differential Privacy [Dwork 2006]
BElNoise mechanism M is said to be € —differentially

private /T
®for any two databases Dand D’ st., |D-D’|=1
P /e, one entry difference
&®for any output set S
»Pr[M(D) € S] < e®-Pr[M(D") € S]
> &: Privacy budget

Probability Density No one can decide whether the original database
1 is D or D’, with high probability.

Distribution of
perturbed ‘ Distribution of

output M(D) perturbed( )
M ' e

Possible output value
(Note. Sometimes the output is a vector in higher dimensions)




Example: Laplace Mechanism [McSherry, Talwar, 2007]

B Add noises following the Laplace distribution:
|x—u|
Qie(_ S 8)
2S
P 1 : actual output £: parameter for e—differential privacy
P S: Sensitivity (Minimum difference between output(D) and output(D "))
D-D’|=1
H Then (1D-D7=1)
®Pr[M(D) € S| <ef-Pr[M(D') € S] forany Dand D
Probability
deQSity output(D) output(D’)
Distribution of Distribution of
perturbed perturbed
output M(D) output M(D’)
# H Perturbed result

Always = sensitivity S



Two Important Properties of the Differential Privacy
B Flexible applications

€ Noise can be added at any stage
P Local data before uploading / database / algorithm inside / output

results / trained parameters / etc.

Original _3
Data

- More noise - (Possibly) less noise
- For general use - For specific use
- Easier to Design Trade-offs - Difficult to design (in general)

B Robustness against attacks

€ Any postprocessing on already s—differentially private data
is kept to be e—differentially private

P ie. Theoretically no one can break e—differential privacy!



Our Recent Research: DP mechanisms for GWAS

B Differentially Private Mechanism Design for GWAS

GWAS Data AA/Aa/aa (A: major a: minor)
[Yamamoto+, DBSec 2023] SNPs/Variations/etc

Contingency Table

| Cochran-Armitage Test

Fisher’s Test

Transmission
disequilibrium

FChi-square Test

[Fienberg+ 2011] [Yamamoto+) [Yamamoto+, test (TDT) (Y X

[\{arnamotm_—, iQinformatics Bioinformatics [Wang+ 2017]

Bioinformatics Advan Advances 2021 [Yamamoto+, BIBM 2021]

?deances 2021] [Yamamoto+, PSB 2022]
amamoto+, .

ST 2023] Top k Significant SNPs [Yamamotor, PST 2023]

[Yamamoto+, IEEE TrustCom 2022, IEEE Outstanding Paper Award]
[Yamamoto+, JCB 2023]
[Yamamoto+, TrustKDD 2023]



Our Recent Research: DP mechanisms for GWAS

B Differentially Private Mechanism Design for GWAS

GWAS Data AA/Aa/aa (A: major a: minor)
[Yamamoto+, DBSec 2023] SNPs/Variations/etc

Contingency Table

II‘//(/IIIIIIIII EEEEEDN
| Cochran-Armitage Test

I EEEEEEEEEEEEEEERN

° IIIIIIIIIIIII..

Transmission

. | Chi-square Test disequilibrium

|
[
[
[
:
Fienberg+ 2011] test (TDT) (Y Y,
[
L

[Yamamoto+) [Yamamoto+,
@ Yamamoto+, iQinformatics Bioinformatics [Wang+ 2017]
B aticss m m m m u VS O ey g Ye \T= [ T =0 BN NN NN YSRGS O /e n?®
Advances 2021] [Yamamoto+, PSB 2022]

Y to+, .
L;Tmzaon;;] o Top k Significant SNPs [Yamamoto+, PST 2023]

Fisher’s Test

[Yamamoto+, IEEE TrustCom 2022, IEEE Outstanding Paper Award]
[Yamamoto+, JCB 2023]
[Yamamoto+, TrustKDD 2023]



Sensitivity Analyses for Laplace Mechanism for GWAS Tests

B Sensitivity of the y? test ase | control | Tota
A a c m
¢S = 4N/(N + 4) [Fienberg+ 2011] , b J N—m
® Sensitivity of log,,(P-value) N Toew | Nz | N2 N
’233 (i_e_, Constant) Case Control Total
B Sensitivity of the Fisher' s independence test e ‘ "
‘ S — N(7N_6) aa c f N—m-—n
32(N—-1)(N-3) Total | N/2 N/2 N
B Sensitivity of the Cochran—Armitage’ s trend test Contingency Tables
16N(N2+6N+4) Our Result
¢S = NT18)(V21N-4) j [Yamamoto+,
oo Bioinfor. Adv. 2021]
e=7.0 e =10.0
10 =====m=ms__ . LO =
0.6 1/ — precision S 0.6 —— precision
=== recall AN === recall
04 £measure 0.4 AN ' R f-measure
6.0 6.5 7.0 threS:oslds 8.0 Srf—log p-value) 6.0 6.5 7.0 thres?jlds 8.0 85 (-log P-value)

Trade-off between privacy and accuracy in Fisher’s Test




Our Recent Research: DP mechanisms for GWAS

B Differentially Private Mechanism Design for GWAS

GWAS Data AA/Aa/aa (A: major a: minor)
[Yamamoto+, DBSec 2023] SNPs/Variations/etc
[Yamamoto+, ISCC 2024]

’Chi-square Test disequilibrium

[Fienberg+ 2011] [Yamamoto+ [Yamamoto+, test (TDT) 000

amamoto+, informatics ioinformatics

[Y iQinf ' Bioinf ' [Wang+ 2017]

Bioinformatics Advan Advances 2021 [Yamamoto+, BIBM 2021]

Advances 2021] wER UEERAERERGEE '
[Yamamoto+, PSB 2022]

Y to+, .
L;Tmzaon;;] o Top k Significant SNPs [Yamamoto+, PST 2023]

Contingency Table

| Cochran-Armitage Test

Transmission

Fisher’s Test

*

[Yamamoto+, IEEE TrustCom 2022] - IE
[Yamamoto+, JCB 2023]
[Yamamoto+, TrustKDD 2023]

E Outstanding Paper Award

sEEEEEREN,

Qumn

’lIIIIIIIIIIIIIIIIIIIIII’



The top & significant SNPs/genes/etc

Bl We can obtain the DP top k significant SNPs by adding
DP noise to each SNP value, but it does not work well.

® as we need to add \/n times larger noise = TOO LARGE!

P than the case of publishing a single SNP result
» n: Number of SNPs

103.55 output the 3-most
87.64 Y significant genes
53.37 4
49.55 W » X’ Y’ Z
Vv
U

47.32
42.20

SNPs sorted by P-values




Observation

B We can reduce it to 0(\/%) In case we publish only A

specific pre—determined SNPs data.
® i n

€ But we cannot know which to publish beforehand

103.55 X
87.64 Y
53.37 Z
49.55 W
42.20 U

Output P-values of 3 Specific SNP data




Compressive Mechanism [Lietal., 2011]

ﬂAssumption Input vector PR
@ It can be approximately represented
by a very small vector n n X [IIP
B Compressed sensing it !

. _ Some orthonormal matrix
€ Find a representative small vector by

random projection 4

Smaller vector n
P Appropriate p must be given
. . [IIP p— Ip X n
B Compressive Mechanism ,
Random matrix -

€ Add noise to the smaller projected vector and Inpu;
reconstruct the original vector! vector
® Pros
P Noise size can be O(/p) instead of O(y/n)
& Cons

P Very slow, and it cannot be applied to the entire SNPs data

» Works well only for only sparse data

» Could contain more errors if not



[RECOMB Genome Security

Our Mechanism for Publishing top-k SNPs Workshop, 2022 (JCB 2023)]

B Enhanced compressive mechanism

€ Add smaller noise to top—rank SNPs by compressive mechanism
P after sparsification by Haar wavelet transformation

€ Add Laplace noise to other SNPs

€ Merge them and extract top A SNPs
P 2x noise needed, but still better than just applying only Laplace mechanism

B The output is still € —differentially private

Sparsification by Haar wavelet transformation

ETTITTNEET | Rendam Projection

% 103.55 Noise addition
(k' > k) 87.64 »
53 37 Output

Compressive mechanism ‘I:I

(Smaller noise) Top K

— extraction

Laplace mechanism e
(Larger noise)

X
Y
z
W
Vv
U

Sorted SNPs




3 |t [RECOMB Genome Security
esu Workshop, 2022 (JCB 2023)]

T. Shibuya

B The top—10 significant SNPs

—e— Comp. -¥-- Comp. + Lap. = Lap. —— EXp. -¥-- Comp. + Lap. -4 Lap. —*— EXp.
1.0 4 1.0
o [ ]
Far higher accuracy achieved!
9 9
© 0.6 © 0.6
- ) X
O 0.4 O 0.4 E-—I ~~~~~~~~ R ¥-----" Y
© ©
0.2 0.2
0.0 0.0 dh=rghe e g e ——— [ S —_—
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
epsilon epsilon

Simulated Data (#SNPs=500)

B Running time
(sec)

Compressive
Laplace

Exponential

Simulated Data (#SNPs=25,000)

| Mechanism | #SNPs=500 #SNPs=25,000

Ours (Comp+Lap)

2.96 7.9x103
6.52 - (Takes too much time)
2.9x10* 5.6x103
1.6x103 7.8x107



DP mechanisms for GWAS

B Differentially Private Mechanism Design for GWAS

L W E NN N NN EEEEEEEE) ‘ || ]
.0 e \ [ \
= AA/A A: maj mi
- GWAS Data - /Aa/aa ( r?ajf)r a: minor)
[Yamamoto+, DBSe® 2023] = SNPs/Variations/etc
| ] [ ]
| ] [ ]
| ] [ ]
0 Contingency Table -
»
\ 4

Transmission
disequilibrium

EEENE t EEEENE
FChi-square Test | Cochran-Armitage Test

Fisher’s Test

[Fienberg+ 2011] [Yamamoto+) [Yamamoto+, test (TDT) (Y X

[\{arnamotm_—, iQinformatics Bioinformatics [Wang+ 2017]

Bioinformatics Advan Advances 2021 [Yamamoto+, BIBM 2021]

?deances 2021] [Yamamoto+, PSB 2022]
amamoto+, .

ST 2023] Top k Significant SNPs [Yamamotor, PST 2023]

[Yamamoto+, IEEE TrustCom 2022, IEEE Outstanding Paper Award]
[Yamamoto+, JCB 2023]
[Yamamoto+, TrustKDD 2023]



Local Differential Privacy
Bl Local differential privacy [Kasviswanathan et al., 2008]
@ Add noise to all the data labels ‘locally’

P No one (except for the data owner) can see the original data, while
we can do any analysis on the published noise—added data

B Strategies

@ Ordinary DP mechanisms for numerical data

»e.g., Laplace mechanism

€ Random response for label data [warner+ 65]

P Changing labels probabilistically 0 1
> e.g., flipping 0/1 probabilisitically for 0/1 data 0 1—q o
1 l1—«a
1
(C( a e€+1)

Distortion matrix




Analysis Bias by Local Differential Privacy

B Local differential privacy schemes could cause biases
B Debiasing methods

€ EM-algorithm for random response
» RAPPOR [Erlingsson+ 14]
P GWAS contingency table [Yamamoto+ 23]

@ Debiasing polynomial functions for Laplace noise
P k—star counting on graphs [Hillebrand+ 23]

---------------------------------------------------------
"""""

Data | > Noise-added Data Analysis

_ : Obtained 7
Data ' > Noise-added Data | i

Result
Data = i~ _Noise-added Data | :

ooooo
.......................................................

Analysis

Real
Result




More Accurate Strategies for Contingency Tables [HEALTHINF 2023]

B Consider attribute pair as a single attribute to reduce noise

B EM algorithm to improve accuracy
¢ Compute argmaxp o g s Prob(P’,Q',R',S'|P,Q,R,S)

P R S
Case Control
P 1-3ax a a a
Major P Q Q 1-3a a a (a 1
- R 1-3a a ef+3
Minor
° R > S 1-3a
Distortion Matrix Prob(X — Y)
Randomized 0 o ous
14 A =»= Laplace
Response  Expectation 12-
Maximization 2
£
6-
Case | Control L« )
Major| P~ Q° @-I‘*:{' A e B L L
: , , Better " ' '
Mlnor R S 0 20 40 SNPS 60 80 100

Cochran-Armitage Trend Test Accuracies




Local Differential Privacy on Graph (4ijiebrand+, koD 2023]
B Assume a graph where

@ Each vertex has its “sensitive’ adjacency list

B Problem
€ Number of A—stars in graph

B Strategy

® Each vertex provide its Laplace noise—added degree

€ Compute number of A—stars based on the reported degrees

Sendits d
ena its degree Estimated #k-star is:

v with noise B
2=(5 + noise) ' F'a+1)/T(a—k+ DI'(k+1)
— e.g.Estimated #k-star is: 24.1

Estimation
/a rge

Actual #3-star around v is (g) =10 difference!!

e.g.6.31 —



Debiasing Polynomial Effect of Laplacian Noise (yijiebrand+, koD 2023]

O Tomasz s Theorem [Tomasz+ 10]
€ The expected value of Laplace noise—added x"

'r+1 —
> E((x + Lap(x, bY)") = Bp/3) s 22

B Experiment

@ Estimating #3—stars on IMDB datasets [Leskovec+ 14]
» (896,308 nodes/ 57,064,358 edges)

3-stars
1 020

1018
1016

10" Better

1012

L2 Loss

12 loss

101

108 —— LocalLapKStar
—&— Our Algorithm

1 6
0 0 4 8 12 16 20

1 (x10%) #samples



Assigning Different Privacy Budgets to Many Attributes (jscc 2023

H Problem of finding the ‘optimal’ distortion table

€ Objective
P Minimize the entire privacy budget

€ Parameters
» 0(|Z|?Y) flip probabilities between all pair of O(|%|") label strings
> X: #label (= alphabet), [: #attributes (=string length)
€ Constraints
P Given different privacy budgets for different attributes
P ‘Reasonable’ flip probabilities

[ Different privacy requirements ]

S Linear
DTSSR, frogramming
1 1 0 0 1 2 0 1
2 1 1 1 0 2 0 0
3 0 2 1 o 1 0o 1 ﬁ Faster
4 2 0o 0 1 0 1 2 Heuristic
5 1 1 0 0 1 1 0



Objective

B Consider each data as a string S; € |Z|*

B Minimize the entire privacy budget
®ie, max,, (p,;/py) (F,k#l)

5,=000 5,=001 S5,=010 S,=011 S.=100 S,=101 S,=110 S,=111

All edited
5,=000 P  Pon P13 P1a Pis P16 P17 P1g
No edit
5,=001 P2 Pa3 P24 P75 P26 P77 Pig
5;,=010 P33 P34 P35 P3g P37 P3g
5,=011 Pas Pas Pas Pa7 Pag
5s=100 Pss Pse Ps7 Psg
5¢=101 Pes Pe7 Pes
5,=110 P77 P7s
5,=111 Pag

Distortion matrix for 3 binary attribute data




Budget Constraint for Each Attribute

B Privacy budget &; for each attribute i is given

®cg 2 P(100—*0%)/ 2, P(100—*1%) < e®2
» The same for 000/001/101

$,=000 5,=001 S5;=010 S5,=011 S.=100 S5.,=101 S,=110 Sg=111

5,=000 P11 P1; P13 Pia Pis P16 P17 Pis
5,=001 P2; P23 P24 P3s P26 P27 Pas
5;=010 P33 P34 P35 P36 P37 Pss
5,=011 Paa Pas Pas Pa7 Pag
55=100 Pss Pse Ps7 Pssg
56=101 Pss Pe7 Pes
5,=110 P77 P7s
5,=111 Pes

Distortion matrix for 3 binary attribute data




‘Reasonable’ Edit Transition Probability Constraint

DlLarger edit (response) should be rarer

®cg, P(010—011) = P(010—001)
P which corresponds to edit transition 010—011—001

$,=000 5,=001 S5;=010 S5,=011 S.=100 S5.,=101 S,=110 Sg=111

5,=000 P11 P1; P13 Pia P15 P16 P17 Pis
5,=001 P2; P23 P24 P2s P26 P27 Pas
5;=010 P33 P34 P35 P36 P37 Pss
5,=011 Paa Pas Pas Pa7 Pag
55=100 Pss Pse Ps7 Pssg
56=101 Pss Pe7 Pes
5,=110 P77 P7s
5,=111 Pes

Distortion matrix for 3 binary attribute data




Reducing #Parameters by Utilizing Symmetry in Distortion Matrix
B The same editing probabilities for the same set of
attributes

@ regardless of labels
®ec.g. P(000—101)=P(001—100)=P(010—111)=P(011—110)

5,=000 S5,=001 S5,=010 S,=011 S.=100 S,=101 S,=110 S,=111

5,=000 P11 P12 P13 P14 P1s P16 P17 P1s
5,=001 P2; P23 P24 Pas Pie P27 Pis
5;=010 P33 P34 P3s P36 P37 Pss
5,=011 Paa Pas Pae P47 Pasg
55=100 Pss Pse Ps7 Pssg
5,=101 Pee Pe7 Pes
5,=110 P77 P7s
Sg~111 Pss

Distortion matrix for 3 binary attribute data




Experimental Result

BEntire privacy levels of the optimal distortion
matrices
®on randomly generated attribute privacy budgets
P 5 attributes, [X| = 5,1 < g < 8, 200 sets

B Our heuristic also achieves near—optimal privacy

|eve| —e— Kronecker —x— Optimal —-=—- Heuristic

Better

Entire Privacy o8-
Level Ratio

(X X; &)

10 15 20 25 30 35
Sum of Privacy Levels



An Example of the Optimal Solution

T. Shibuya

B Example Settings:
® 5 attributes, |2| =5, & =0.1,6, =0.2,e5=05,¢, = 0.7, &5 = 2.0

B Optimal entire privacy level: € =2.67 (=In 14.37)
@ Better than the simple strategy [Wang+ 16] where € = },; &; = 3.5

* % * %
O 14.37 00 14.37
* () *% (% ()
000 14.37 14.37
* *00*0 **00* *k kK ()
0000 |, , 37 4.37 14.37 1138
* * * ()% ¥
0*000 e 14.37 0770 13.42 | ***0*
14.37 1.19
0*00* *0*0*
00000 00*00 14.37 5.34 ok ()% * * % % % %
14.37 | o*0*0 %00 * * 1
14.37 0000 4.37 1 *QRAR
14.37 * % * & 1
3 0**00 4.37 0***0 —
0000* * ()% * % ()%
1437 | 00707 oo (9707 )50, 1
* % * (V% *
00**0 9.65 0*0 1
000** QQ***
1 1




k-Anonymization: A Yet Another Privacy Preservation Technique

B To reduce risk of being identified [Sweeney 2002]

® 85% of the US citizens can be identified only by
(birthdate/ZipCode/Sex) information [Sweeney 2002]

Name Rirthdate [7in Cade [Sex Information
Alex Tokyo 19990123 108-8639 Male 1
Robert kyotd | 19990711 | 153-8902 | Male -4

o

Name Birthdate—Zip-Code—Sex——— Information

PB924CD| [1999%*** [1** g*** | Male
AR325HB| [1999**** [1%*.g8*** | Male

2-Anonymization




k-Anonymization and Differential Privacy

T. Shibuya

B f—anonymization does not satisfy the differential privacy

B Differential privacy does not satisfy the k—anonymization

€ Noise added data can collide with the existing data in
coincidence

P It could cause a problem of false accusation

Can we satisfy both?




Strategies [HEALTHINF 2023]

B Naive algorithm (kN+DP)

@ k-anonymization BEFORE differential private anonymization
P k-anonymity not satisfied

B Naive algorithm (DP+kN)

® k-anonymization AFTER differential private anonymization

P Both anonymity satisfied, but less accurate
> Due to the too ‘high’ privacy level

B Our algorithm ((&, k)—anonymization)
® k' (k' < k)—anonymization first
P To prevent accuracy loss in the final k-anonymization
@ Then, Differential private anonymization
@ k-anonymization, finally

P Satisfies both anonymity, keeping accuracy



Experimental Results

B Data

® 1512, 673 entries, J-MIMO Medical Record

2021-3.

B Results

€ kN+DP
P i-anonymity not satisfied
¢ DP+kN

P Privacy level increases unintentionally
> which causes substantial loss of accuracies

® (&, k)—anonymization
» Very accurate, satisfying both properties

0.8 1

—— k-RR
0.7 A Al ithm 2 -8 RR-k
8 0.6 A *l+~"~.\+___+_g_o_$;t_-m —>= RA
T 05 L §
o AN
a_) 0.4 A1 \\
.2 0.3 Better *‘
o N\
102 ) \
¥ Algorithm 3 \
0.1 o= .____*'\ \..~
0.0 Algorithm 1 = e »
0.0 2.|5 5|.0 7:5 10I.0 12|.5 15I.0 17:.5 26.0
epsilon

Accuracies of the algorithms
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Summary / Future Work

B Differentially private methods for biomedical
data
€ GWAS statistics publication
@®Post—processing for local differential privacy
€ Multiple attribute publication
@ /—anonymization and differential privacy

BFor the CPM community ©

@ A string = A set of multiple attributes
®We could consider differential privacy on many CPM
problem (preferably on sensitive data)

P How to reduce noise (to a reasonable level)
» How to debias



Acknowledgements

Quentin Hillebrand

Akito Yamamoto

Prof. Vorapong Suppakitpaisarn l



Thank you very much!



	Preserving Privacies in Biomedical Data�with “More Efficient” �Differentially Private Algorithms
	Today’ｓ Talk
	Next Generation Sequencers（NGS）
	Clinical Sequencing for Precision (Personalized) Medicine
	A Concern on Precision Medicine
	Example: Genotype Analysis using Pedigrees
	Example: Genotype Analysis using Pedigrees
	Example: Genotype Analysis using Pedigrees
	It leaks much information!!
	GWAS (Genome-Wide Association Study)
	Statistics used in GWAS
	Differential Privacy   [Dwork 2006]
	ε-Differential Privacy 　[Dwork 2006]
	Example: Laplace Mechanism [McSherry, Talwar, 2007]
	Two Important Properties of the Differential Privacy
	Our Recent Research: DP mechanisms for GWAS
	Our Recent Research: DP mechanisms for GWAS
	Sensitivity Analyses for Laplace Mechanism for GWAS Tests
	Our Recent Research: DP mechanisms for GWAS
	The top k significant SNPs/genes/etc
	Observation
	Compressive Mechanism   [Li et al., 2011]
	Our Mechanism for Publishing top-k SNPs
	Result
	DP mechanisms for GWAS
	Local Differential Privacy
	Analysis Bias by Local Differential Privacy
	More Accurate Strategies for Contingency Tables
	Local Differential Privacy on Graph
	Debiasing Polynomial Effect of Laplacian Noise
	Assigning Different Privacy Budgets to Many Attributes
	Objective
	Budget Constraint for Each Attribute
	‘Reasonable’ Edit Transition Probability Constraint
	Reducing #Parameters by Utilizing Symmetry in Distortion Matrix
	Experimental Result
	An Example of the Optimal Solution
	k-Anonymization: A Yet Another Privacy Preservation Technique
	k-Anonymization and Differential Privacy
	Strategies
	Experimental Results
	Summary / Future Work
	スライド番号 43
	スライド番号 44

