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Today’ｓ Talk

Differential privacy algorithms and its applications

Techniques

Sensitivity analysis

Bias reduction

Multiple attributes

k-anonymized differential privacy

Applications

Genome-wide association study

Graph databases
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Next Generation Sequencers（NGS）

One of the greatest innovation 
in genome science

Fast:
8Tbp / 1 day (Illumina NovaSeq X)

～60 individuals per day

Cheap:
200-300 dollars per individual

Illumina
NovaSeq X

Oxford Nanopore
MinION

https://nanoporetech.com/sites/default/files/s3/
minion-usb.png

PacBio
Sequel II

cf. Costed 3 billion dollars and 13 years in 
the Human  Genome Project （～2003）

https://jp.mgi-
tech.com/products/instruments
_info/22/

MGI
DNBSEQ-T20x2

https://www.pacb.com/products-
and-services/sequel-system/latest-
system-release/

https://jp.illumina.com/systems/sequencing-
platforms/novaseq-x-plus.html

[Davis-Dusenbery, 2017]

Genome Data Explosion
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Clinical Sequencing for Precision (Personalized) Medicine

Patient

Attending 
doctor

Expert 
Panel

NGS
data 

analysis

Sequencing by 
NGS

Diagnosis system

DB

photo: illumina.com

Diagnosis based on individual genomes

Searching similar cases on DBs

AI prediction
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A Concern on Precision Medicine

It utilizes highly sensitive data

Including genomes of other people

Question

Can we assure that the 
recommendation does not contain 
any sensitive private information?

Diagnosis
System

A patient’s dataTraining/Searching

Very 
sensitive 
database Recommendation
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Example: Genotype Analysis using Pedigrees

How secure is it to disclose the probabilities 
(i.e., 0, 1/9, 8/9) to Ms. X? 

AA: Major homo
Aa: Hetero
aa: Minor homo

Genotypes

AaAa

aa ?

aaaaaaaa

Ms. X

𝜱𝜱: parents’
information

𝜳𝜳: children’s    
information

(𝒚𝒚 =) 𝑥𝑥

Sensitive data
to be protected

 Probabilities of possible genotypes x of Ms. X
 From only the parent information:

 P 𝑥𝑥 = AA Φ = 1/4, P 𝑥𝑥 = Aa Φ = 1/2, P 𝑥𝑥 = aa Φ = 1/4
 Probabilities of children’s genotypes under 3 possible cases

 P Ψ 𝑥𝑥 = AA, 𝑦𝑦 = aa = 0
 P Ψ 𝑥𝑥 = Aa,𝑦𝑦 = aa = 1/16
 P Ψ 𝑥𝑥 = aa,𝑦𝑦 = aa = 1

 Hence P 𝑥𝑥 = AA = 0, P 𝑥𝑥 = Aa = 1/9, P 𝑥𝑥 = aa = 8/9
 by Bayesian inference

Genotype of this 
SNP is Aa (Hetero)

(A: major  a: minor)

A
a

Allele

SNP

Spouse’s 
information



T. Shibuya

Example: Genotype Analysis using Pedigrees

How secure is it to disclose the probabilities 
(i.e., 0, 1/9, 8/9) to Ms. X? 

AA: Major homo
Aa: Hetero
aa: Minor homo

Genotypes

AaAa

aa ?

aaaaaaaa

Ms. X

𝜱𝜱: parents’
information

𝜳𝜳: children’s    
information

(𝒚𝒚 =) 𝑥𝑥

Sensitive data
to be protected

 Probabilities of possible genotypes x of Ms. X
 From only the parent information:

 P 𝑥𝑥 = AA Φ = 1/4, P 𝑥𝑥 = Aa Φ = 1/2, P 𝑥𝑥 = aa Φ = 1/4
 Probabilities of children’s genotypes under 3 possible cases

 P Ψ 𝑥𝑥 = AA, 𝑦𝑦 = aa = 0
 P Ψ 𝑥𝑥 = Aa,𝑦𝑦 = aa = 1/16
 P Ψ 𝑥𝑥 = aa,𝑦𝑦 = aa = 1

 Hence P 𝑥𝑥 = AA = 0, P 𝑥𝑥 = Aa = 1/9, P 𝑥𝑥 = aa = 8/9
 by Bayesian inference

Genotype of this 
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A
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SNP
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DNA
Chain polymer molecule composed of 4 types of nucleic acids: 

A/T/C/G

Chromosomes
DNA molecules in a cell
We have 23 pairs of chromosomes (1-22 and X/Y)

SNPs (Single nucleotide polymorphisms)
Specific positions with single nucleotide variations

Alleles
Type of the nucleic acid at the SNP

Major/Minor Alleles
The most common type of a SNP is called the major allele
Other types are called minor alleles

Genotypes
Pair of alleles at the SNP
Called homozygous (or homo) if both alleles are the same

major homo/minor homo

Called heterozygous (or hetero) otherwise

Technical Terms
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Example: Genotype Analysis using Pedigrees

Is it OK to disclose the probabilities 
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It leaks much information!!

Given:
Probabilities of Ms. X’s possible genotypes are:

P 𝑥𝑥 = AA = 0, P 𝑥𝑥 = Aa = 1/9, P 𝑥𝑥 = aa = 8/9.

Only 3 possible cases (as below) exist, which means:
Her parents’ genotypes are revealed

All the other genotypes are also be revealed, if she know her 
husband’s genotype

AaAa

AA

AaAaAaAa

Ms. X

AaAa

Aa

aaaaaaaa

Ms. X

AaAa

aa

aaaaaaaa

Ms. X

Candidate 1 Candidate 2 Candidate 3
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Case Control Total

A a b 𝑚𝑚

a c d 𝑁𝑁 −𝑚𝑚

Total 𝑁𝑁/2 𝑁𝑁/2 𝑁𝑁

Case Control Total

AA 𝑎𝑎 𝑑𝑑 𝑚𝑚

Aa 𝑏𝑏 𝑒𝑒 𝑛𝑛

aa c f 𝑁𝑁− 𝑚𝑚−𝑛𝑛

Total 𝑁𝑁/2 𝑁𝑁/2 𝑁𝑁

GWAS (Genome-Wide Association Study)

GWAS Data

Contingency Tables

Fisher’s TestChi-square Test Cochran-Armitage Test

Top k significant SNPs

Transmission 
disequilibrium 

test (TDT)

- Case-control table (2x2, 3x2, …)
- Trio allele frequency table

Case Control

AA pAA nAA

Aa pAa nAa

aa paa naa

Case Control

A pA nA

a pA na

Contingency Tables

AA/Aa/aa (A: major  a: minor)

SNPs/Variations/etc

Further evaluation

Statistical analyses for finding important genes/SNPs/etc.

Case Control Total

A a c 𝑚𝑚

a b d 𝑁𝑁 −𝑚𝑚

Total 𝑁𝑁/2 𝑁𝑁/2 𝑁𝑁

g1 g2 Total

g1 a c 𝑚𝑚

g2 b d 𝑁𝑁 −𝑚𝑚

Total 𝑁𝑁/2 𝑁𝑁/2 𝑁𝑁

g1 g2
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Statistics used in GWAS

Case Control Total

A a c 𝑚𝑚

a b d 𝑁𝑁 −𝑚𝑚

Total 𝑁𝑁/2 𝑁𝑁/2 𝑁𝑁

Predictable?

Case Control Total

A a b 𝑚𝑚

a c d 𝑁𝑁 −𝑚𝑚

Total 𝑁𝑁/2 𝑁𝑁/2 𝑁𝑁

Independent?

Case Control Total

AA 𝑎𝑎 𝑑𝑑 𝑚𝑚

Aa 𝑏𝑏 𝑒𝑒 𝑛𝑛

aa c f 𝑁𝑁 −𝑚𝑚− 𝑛𝑛

Total 𝑁𝑁/2 𝑁𝑁/2 𝑁𝑁
=?

Contingency Tables

No problem to publish these statistics?

χ2 test

χ2 = 𝑁𝑁(2𝑎𝑎−𝑚𝑚)2

𝑚𝑚(𝑁𝑁−𝑚𝑚)

Fisher’s independence test

𝑝𝑝 =
𝑚𝑚
𝑎𝑎

𝑁𝑁−𝑚𝑚
𝑐𝑐

𝑁𝑁
𝑚𝑚

Cochran-Armitage’s trend test

𝜒𝜒2 = 𝑁𝑁(2𝑚𝑚+𝑛𝑛−2 2𝑎𝑎+𝑏𝑏 )2

𝑁𝑁 4𝑚𝑚+𝑛𝑛 −(2𝑚𝑚+𝑛𝑛)2

Top k significant genes
Output genes with the k largest test values
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Differential Privacy   [Dwork 2006]

Noise addition strategy for preserving privacy

Differential privacy is satisfied if:

M(D) and M(D’) is
probabilistically indistinguishable.

Database D’Database D

Noise-added analysis
based on DP

One entry difference 
(insertion/deletion/update)

Any kind of results
(Statistics, prediction result, etc)

Result M(D) Result M(D’)

Gödel Prize
2017

Possible output value
(Note. Sometimes the output is a vector in higher dimensions)

Probability Density

Distribution of 
perturbed 
output M(D)

Distribution 
of perturbed 
output M(D’)



T. Shibuya

ε-Differential Privacy [Dwork 2006]

Noise mechanism 𝑀𝑀 is said to beε-differentially 
private iff
for any two databases D and D’ s.t., |D-D’|=1 
i.e., one entry difference

for any output set 𝑆𝑆
Pr 𝑀𝑀 𝐷𝐷 ∈ 𝑆𝑆 ≤ 𝑒𝑒𝜀𝜀 � Pr 𝑀𝑀 𝐷𝐷′ ∈ 𝑆𝑆
𝜀𝜀: Privacy budget

Possible output value
(Note. Sometimes the output is a vector in higher dimensions)

Probability Density

Distribution of 
perturbed 
output M(D)

Distribution of 
perturbed 
output M(D’)

No one can decide whether the original database 
is D or D’, with high probability.
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Example: Laplace Mechanism [McSherry, Talwar, 2007]

Add noises following the Laplace distribution: 


𝜀𝜀
2𝑆𝑆
𝑒𝑒 − 𝑥𝑥−𝜇𝜇

𝑆𝑆 𝜀𝜀

𝜇𝜇 : actual output               𝜀𝜀: parameter for 𝜀𝜀-differential privacy

𝑆𝑆: Sensitivity (Minimum difference between output(D) and output(D’))

Then
Pr 𝑀𝑀 𝐷𝐷 ∈ 𝑆𝑆 ≤ 𝑒𝑒𝜀𝜀 � Pr 𝑀𝑀 𝐷𝐷′ ∈ 𝑆𝑆 for any D and D’

Perturbed result

Probability
density

Always ≥ sensitivity S

Distribution of 
perturbed 
output M(D)

Distribution of 
perturbed 
output M(D’)

output(D’)output(D)

𝜇𝜇 𝜇𝜇’

(|D-D’|=1) 
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Two Important Properties of the Differential Privacy

Flexible applications

Noise can be added at any stage
Local data before uploading / database / algorithm inside / output 

results / trained parameters / etc.

computationDatabase Output
Original

Data

- (Possibly) less noise
- For specific use
- Difficult to design (in general)

- More noise
- For general use
- Easier to Design Trade-offs

Robustness against attacks
Any postprocessing on already 𝜀𝜀-differentially private data 

is kept to be 𝜀𝜀-differentially private
i.e., Theoretically no one can break 𝜀𝜀-differential privacy!



T. Shibuya

Our Recent Research: DP mechanisms for GWAS

GWAS Data

Contingency Table

Fisher’s TestChi-square Test Cochran-Armitage Test

Top k Significant SNPs

Transmission 
disequilibrium 

test (TDT)[Fienberg+ 2011] [Yamamoto+, 
Bioinformatics 

Advances 2021] 
[Wang+ 2017] 

[Yamamoto+, BIBM 2021] 
[Yamamoto+, PSB 2022] 
[Yamamoto+, PST 2023]

[Yamamoto+, IEEE TrustCom 2022, IEEE Outstanding Paper Award]
[Yamamoto+, JCB 2023]
[Yamamoto+, TrustKDD 2023]  

Differentially Private Mechanism Design for GWAS

[Yamamoto+, 
Bioinformatics 

Advances 2021] 
[Yamamoto+, 
Bioinformatics 
Advances 2021]
[Yamamoto+, 
PST 2023]

AA/Aa/aa (A: major  a: minor)

SNPs/Variations/etc[Yamamoto+, DBSec 2023] 
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Sensitivity Analyses for Laplace Mechanism for GWAS Tests

 Sensitivity of the χ2 test
𝑆𝑆 = 4𝑁𝑁/(𝑁𝑁 + 4) [Fienberg+ 2011] 

Sensitivity of log10(P-value)
2.33 (i.e., constant)

 Sensitivity of the Fisher’s independence test

 𝑆𝑆 = 𝑁𝑁(7𝑁𝑁−6)
32(𝑁𝑁−1)(𝑁𝑁−3)

 Sensitivity of the Cochran-Armitage’s trend test

 𝑆𝑆 = 16𝑁𝑁(𝑁𝑁2+6𝑁𝑁+4)
(𝑁𝑁+18)(𝑁𝑁2+8𝑁𝑁−4)

Our Result
[Yamamoto+,  
Bioinfor. Adv. 2021] 

Trade-off between privacy and accuracy in Fisher’s Test

ε = 10.0ε = 7.0

(-log P-value) (-log P-value)

…

Case Control Total

A a c 𝑚𝑚

a b d 𝑁𝑁 −𝑚𝑚

Total 𝑁𝑁/2 𝑁𝑁/2 𝑁𝑁

Case Control Total

AA 𝑎𝑎 𝑑𝑑 𝑚𝑚

Aa 𝑏𝑏 𝑒𝑒 𝑛𝑛

aa c f 𝑁𝑁 −𝑚𝑚− 𝑛𝑛

Total 𝑁𝑁/2 𝑁𝑁/2 𝑁𝑁

Contingency Tables
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Our Recent Research: DP mechanisms for GWAS

GWAS Data

Contingency Table

Fisher’s TestChi-square Test Cochran-Armitage Test

Top k Significant SNPs

Transmission 
disequilibrium 

test (TDT)[Fienberg+ 2011] [Yamamoto+, 
Bioinformatics 

Advances 2021] 
[Wang+ 2017] 

[Yamamoto+, BIBM 2021] 
[Yamamoto+, PSB 2022] 
[Yamamoto+, PST 2023]

[Yamamoto+, IEEE TrustCom 2022]  - IEEE Outstanding Paper Award
[Yamamoto+, JCB 2023]
[Yamamoto+, TrustKDD 2023]  

Differentially Private Mechanism Design for GWAS

[Yamamoto+, 
Bioinformatics 

Advances 2021] 
[Yamamoto+, 
Bioinformatics 
Advances 2021]
[Yamamoto+, 
PST 2023]

AA/Aa/aa (A: major  a: minor)

SNPs/Variations/etc[Yamamoto+, DBSec 2023]
[Yamamoto+, ISCC 2024] 
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The top k significant SNPs/genes/etc

We can obtain the DP top k significant SNPs by adding 
DP noise to each SNP value, but it does not work well.
as we need to add 𝑛𝑛 times larger noise - TOO LARGE!

than the case of publishing a single SNP result

𝑛𝑛: Number of SNPs

− log𝑃𝑃 values SNPs

103.55 X

87.64 Y

53.37 Z

49.55 W

47.32 V

42.20 U

… …

X, Y, Z

output the 3-most 
significant genes

SNPs sorted by P-values
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Observation

We can reduce it to 𝑂𝑂 𝑘𝑘 in case we publish only k

specific pre-determined SNPs data. 

k≪n

But we cannot know which to publish beforehand

− log𝑃𝑃 values SNPs

103.55 X

87.64 Y

53.37 Z

49.55 W

47.32 V

42.20 U

… …

Output P-values of 3 Specific SNP data
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Compressive Mechanism   [Li et al., 2011]

Assumption
It can be approximately represented 

by a very small vector

Compressive Mechanism
 Add noise to the smaller projected vector and 

reconstruct the original vector!

 Pros

Noise size can be O( 𝑝𝑝) instead of O( 𝑛𝑛)

 Cons

Very slow, and it cannot be applied to the entire SNPs data

Works well only for only sparse data

 Could contain more errors if not

≈
Input vector

𝑛𝑛 ×𝑛𝑛

𝑝𝑝

𝑝𝑝

Some orthonormal matrix
Compressed sensing

Find a representative small vector by 
random projection
Appropriate p must be given

Input 
vector

𝑛𝑛×𝑝𝑝 : =
𝑛𝑛

𝑝𝑝

Random matrix

Smaller vector
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Our Mechanism for Publishing top-k SNPs

 Enhanced compressive mechanism
 Add smaller noise to top-rank SNPs by compressive mechanism

 after sparsification by Haar wavelet transformation

 Add Laplace noise to other SNPs
 Merge them and extract top k SNPs

 2x noise needed, but still better than just applying only Laplace mechanism

 The output is still ε-differentially private

[RECOMB Genome Security 
Workshop, 2022 (JCB 2023)] 

− log𝑃𝑃 values SNPs

103.55 X

87.64 Y

53.37 Z

49.55 W

47.32 V

42.20 U

… …

Sorted SNPs
Laplace mechanism

(Larger noise)

Compressive mechanism
(Smaller noise) Top K

extraction

Output

Sparsification by Haar wavelet transformation
Randam Projection

Noise addition𝑘𝑘𝑘
(𝑘𝑘𝑘 ≥ k)



T. Shibuya

Simulated Data (#SNPs=500) Simulated Data (#SNPs=25,000)

Result

The top-10 significant SNPs

Running time Mechanism #SNPs=500 #SNPs=25,000

Ours (Comp+Lap) 2.96 7.9x103

Compressive 6.52 - (Takes too much time)

Laplace 2.9x10-4 5.6x10-3

Exponential 1.6x10-3 7.8x10-2

(sec)

Far higher accuracy achieved!

[RECOMB Genome Security 
Workshop, 2022 (JCB 2023)] 
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DP mechanisms for GWAS

GWAS Data

Contingency Table

Fisher’s TestChi-square Test Cochran-Armitage Test

Top k Significant SNPs

Transmission 
disequilibrium 

test (TDT)[Fienberg+ 2011] [Yamamoto+, 
Bioinformatics 

Advances 2021] 
[Wang+ 2017] 

[Yamamoto+, BIBM 2021] 
[Yamamoto+, PSB 2022] 
[Yamamoto+, PST 2023]

[Yamamoto+, IEEE TrustCom 2022, IEEE Outstanding Paper Award]
[Yamamoto+, JCB 2023]
[Yamamoto+, TrustKDD 2023]  

Differentially Private Mechanism Design for GWAS

[Yamamoto+, 
Bioinformatics 

Advances 2021] 
[Yamamoto+, 
Bioinformatics 
Advances 2021]
[Yamamoto+, 
PST 2023]

AA/Aa/aa (A: major  a: minor)

SNPs/Variations/etc[Yamamoto+, DBSec 2023] 
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Local Differential Privacy

Local differential privacy [Kasviswanathan et al., 2008]

Add noise to all the data labels ‘locally’
No one (except for the data owner) can see the original data, while 

we can do any analysis on the published noise-added data

Strategies

Ordinary DP mechanisms for numerical data
e.g., Laplace mechanism

Random response for label data [Warner+ 65]

Changing labels probabilistically

 e.g., flipping 0/1 probabilisitically for 0/1 data
0 1

0 1 − 𝛼𝛼 𝛼𝛼
1 1 − 𝛼𝛼

(𝛼𝛼 = 1
𝑒𝑒𝜀𝜀+1

)

Distortion matrix
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Analysis Bias by Local Differential Privacy

Local differential privacy schemes could cause biases

Debiasing methods

EM-algorithm for random response
RAPPOR [Erlingsson+ 14]

GWAS contingency table [Yamamoto+ 23]

Debiasing polynomial functions for Laplace noise
k-star counting on graphs [Hillebrand+ 23]

Data

Data

Data

Noise-added Data

Noise-added Data

Noise-added Data

Obtained 
Result

Real 
Result

Bias?

Analysis

Analysis
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More Accurate Strategies for Contingency Tables

Consider attribute pair as a single attribute to reduce noise

EM algorithm to improve accuracy
Compute argmax𝑃𝑃,𝑄𝑄,𝑅𝑅,𝑆𝑆 Prob(𝑃𝑃′,𝑄𝑄′,𝑅𝑅′, 𝑆𝑆′|𝑃𝑃,𝑄𝑄,𝑅𝑅, 𝑆𝑆)

[HEALTHINF 2023] 

Case Control
Major P Q
Minor R S

Case Control
Major P´ Q´

Minor R´ S´

Randomized
Response Expectation

Maximization

P Q R S

P 1 − 3𝛼𝛼 𝛼𝛼 𝛼𝛼 𝛼𝛼

Q 1 − 3𝛼𝛼 𝛼𝛼 𝛼𝛼

R 1 − 3𝛼𝛼 𝛼𝛼

S 1 − 3𝛼𝛼

Distortion Matrix Prob 𝑋𝑋 → 𝑌𝑌

(𝛼𝛼 = 1
𝑒𝑒𝜀𝜀+3

)

Better

Cochran-Armitage Trend Test  Accuracies
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Local Differential Privacy on Graph

Assume a graph where

Each vertex has its “sensitive” adjacency list

Problem

Number of k-stars in graph

Strategy

Each vertex provide its Laplace noise-added degree

Compute number of k-stars based on the reported degrees

[Hillebrand+, KDD 2023] 

Send its degree 
with noise

a=(5 +  noise)

Estimated #k-star is:
Γ(𝑎𝑎 + 1)/Γ 𝑎𝑎 − 𝑘𝑘 + 1 Γ 𝑘𝑘 + 1

Actual #3-star around v is 5
3 = 10

v

e.g. 6.31 e.g.Estimated #k-star is: 24.1

Large
difference!!

Estimation
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Debiasing Polynomial Effect of Laplacian Noise

Tomasz’s Theorem   [Tomasz+ 10]

The expected value of Laplace noise-added 𝑥𝑥𝑟𝑟

𝐸𝐸 (𝑥𝑥 + 𝐿𝐿𝐿𝐿𝐿𝐿 𝑥𝑥, 𝑏𝑏 )𝑟𝑟 = ∑𝑘𝑘=0
𝑟𝑟/2 Γ(𝑟𝑟+1)

Γ(𝑟𝑟−2𝑘𝑘+1)
𝑏𝑏2𝑘𝑘𝑥𝑥𝑟𝑟−2𝑘𝑘

Experiment
Estimating #3-stars on IMDB datasets [Leskovec+ 14]

(896,308 nodes/ 57,064,358 edges)

[Hillebrand+, KDD 2023] 

Better

#samples

L2 Loss
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Assigning Different Privacy Budgets to Many Attributes [ISCC 2023] 

Problem of finding the ‘optimal’ distortion table
Objective

Minimize the entire privacy budget

Parameters
𝑂𝑂(|Σ|2𝑙𝑙) flip probabilities between all pair of 𝑂𝑂(|Σ|𝑙𝑙) label strings

 Σ: #label (= alphabet), 𝑙𝑙: #attributes (=string length)

Constraints
Given different privacy budgets for different attributes
‘Reasonable’ flip probabilities

ID A B C D E F G

1 1 0 0 1 2 0 1

2 1 1 1 0 2 0 0

3 0 2 1 0 1 0 1

4 2 0 0 1 0 1 2

5 1 1 0 0 1 1 0

Linear 
Programming

Different privacy requirements

Faster
Heuristic
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Objective

Consider each data as a string 𝑆𝑆𝑖𝑖 ∈ |Σ|𝑙𝑙

Minimize the entire privacy budget
i.e., maxijkl (pij/pkl)   (i≠j, k≠l)

Distortion matrix for 3 binary attribute data

S1=000 S2=001 S3=010 S4=011 S5=100 S6=101 S7=110 S8=111

S1=000 p11 p12 p13 p14 p15 p16 p17 p18

S2=001 p22 p23 p24 p25 p26 p27 p28

S3=010 p33 p34 p35 p36 p37 p38

S4=011 p44 p45 p46 p47 p48

S5=100 p55 p56 p57 p58

S6=101 p66 p67 p68

S7=110 p77 p78

S8=111 p88

No edit

All edited
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Budget Constraint for Each Attribute

Distortion matrix for 3 binary attribute data

S1=000 S2=001 S3=010 S4=011 S5=100 S6=101 S7=110 S8=111

S1=000 p11 p12 p13 p14 p15 p16 p17 p18

S2=001 p22 p23 p24 p25 p26 p27 p28

S3=010 p33 p34 p35 p36 p37 p38

S4=011 p44 p45 p46 p47 p48

S5=100 p55 p56 p57 p58

S6=101 p66 p67 p68

S7=110 p77 p78

S8=111 p88

Privacy budget 𝜀𝜀𝑖𝑖 for each attribute i is given

e.g. Σ*P(100→*0*)/ Σ* P(100→*1*) ≤ 𝑒𝑒𝜀𝜀2
The same for 000/001/101
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‘Reasonable’ Edit Transition Probability Constraint

Larger edit (response) should be rarer

e.g., P(010→011) ≧ P(010→001)

which corresponds to edit transition 010→011→001

S1=000 S2=001 S3=010 S4=011 S5=100 S6=101 S7=110 S8=111

S1=000 p11 p12 p13 p14 p15 p16 p17 p18

S2=001 p22 p23 p24 p25 p26 p27 p28

S3=010 p33 p34 p35 p36 p37 p38

S4=011 p44 p45 p46 p47 p48

S5=100 p55 p56 p57 p58

S6=101 p66 p67 p68

S7=110 p77 p78

S8=111 p88

Distortion matrix for 3 binary attribute data
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Reducing #Parameters by Utilizing Symmetry in Distortion Matrix

The same editing probabilities for the same set of 
attributes

regardless of labels

e.g. P(000→101)=P(001→100)=P(010→111)=P(011→110)

S1=000 S2=001 S3=010 S4=011 S5=100 S6=101 S7=110 S8=111

S1=000 p11 p12 p13 p14 p15 p16 p17 p18

S2=001 p22 p23 p24 p25 p26 p27 p28

S3=010 p33 p34 p35 p36 p37 p38

S4=011 p44 p45 p46 p47 p48

S5=100 p55 p56 p57 p58

S6=101 p66 p67 p68

S7=110 p77 p78

S8=111 p88

Distortion matrix for 3 binary attribute data
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Experimental Result

Entire privacy levels of the optimal distortion 
matrices
on randomly generated attribute privacy budgets 

5 attributes, Σ = 5, 1 ≤ 𝜀𝜀𝑖𝑖 ≤ 8, 200 sets

Our heuristic also achieves near-optimal privacy 
level

BetterEntire Privacy 
Level Ratio 
(× ∑𝒊𝒊 𝜺𝜺𝒊𝒊)
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An Example of the Optimal Solution

 Example Settings:
 5 attributes, Σ = 5, 𝜀𝜀1 = 0.1, 𝜀𝜀2 = 0.2, 𝜀𝜀3 = 0.5, 𝜀𝜀4 = 0.7, 𝜀𝜀5 = 2.0

 Optimal entire privacy level: ε=2.67 (=ln 14.37)
 Better than the simple strategy [Wang+ 16] where 𝜺𝜺 = ∑𝒊𝒊 𝜺𝜺𝒊𝒊 = 3.5

00000
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00*00

0000*

0*000

000*0

**000

*0*00

*00*0

*000*

0*00*

0*0*0

0**00

00*0*

00**0

000**
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**0*0

**00*

*0**0

*0*0*

*00**

0***0

0**0*

0*0**

00***

****0

**0**

0****

***0*

*0***

*****

14.37

14.37

14.37

14.37

14.37

14.37

14.37

14.37

14.37

14.37

14.37

14.37

14.37

13.93

9.65

1

1
13.25

2.12

1

1

11.38

1.19

1

1

1

1

14.37

14.37

14.37

13.42

5.34
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k-Anonymization: A Yet Another Privacy Preservation Technique

To reduce risk of being identified
85% of the US citizens can be identified only by 

(birthdate/ZipCode/Sex) information  [Sweeney 2002]

[Sweeney 2002]

Name  Birthdate   Zip Code  Sex Information
Alex Tokyo          19990123      108-8639           Male …

Robert Kyoto      19990711       153-8902          Male …

Name  Birthdate   Zip Code  Sex Information
PB924CD  1999**** 1**-8***     Male …
AR325HB  1999**** 1**-8***     Male                     …

k=2

k=1
k=1

2-Anonymization
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k-Anonymization and Differential Privacy

k-anonymization does not satisfy the differential privacy

Differential privacy does not satisfy the k-anonymization

Noise added data can collide with the existing data in 
coincidence
It could cause a problem of false accusation

Can we satisfy both?
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Strategies

Naïve algorithm (kN+DP)
k-anonymization BEFORE differential private anonymization

k-anonymity not satisfied

Naïve algorithm (DP+kN)
k-anonymization AFTER differential private anonymization

Both anonymity satisfied, but less accurate

 Due to the too ‘high’ privacy level

Our algorithm ( 𝜀𝜀, 𝑘𝑘 -anonymization)

𝑘𝑘𝑘(𝑘𝑘′ < 𝑘𝑘)-anonymization first
To prevent accuracy loss in the final k-anonymization

Then, Differential private anonymization

k-anonymization, finally

Satisfies both anonymity, keeping accuracy

[HEALTHINF 2023]
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Experimental Results

 Data
 1,512, 673 entries, J-MIMO Medical Record 

2021-3.

 Results
 kN+DP

 k-anonymity not satisfied

 DP+kN
Privacy level increases unintentionally

 which causes substantial loss of accuracies

 𝜀𝜀, 𝑘𝑘 -anonymization
Very accurate, satisfying both properties

Algorithm 2

Algorithm 1

Algorithm 3

Accuracies of the algorithms

Better

Unintentional increase of privacy levels

DP+kN

k-anonymity loss of kN+DP

Smaller

(𝜀𝜀,𝑘𝑘)-anonymization
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Summary / Future Work

Differentially private methods for biomedical 
data
GWAS statistics publication

Post-processing for local differential privacy

Multiple attribute publication

k-anonymization and differential privacy

For the CPM community 
A string = A set of multiple attributes

We could consider differential privacy on many CPM 
problem (preferably on sensitive data)
How to reduce noise (to a reasonable level)

How to debias
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