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How big is a pointer?
To address a space of size n

 bits≥ log n

The end?



Can we compress pointers?

Impossible in general


This talk is about how to make this impossibility a reality for interesting cases

Tiny Pointers: -bit pointerso(log n)



Can we compress pointers?

Questions:

• How?


• Why?  When is the size of pointers a bottleneck?


In this talk: 

• Theory of tiny pointers [Bender, Conway, FC, Kuszmaul, Tagliavini SODA ’23]


• Uses of tiny pointers

Tiny Pointers: -bit pointerso(log n)



A running example of how and why  
for Tiny Pointers: 

Succinct Search Trees



When is a search trees succinct?
Consider your favorite binary search tree: red-black, splay, …


How much space does it take?


• Total pivot key space  bits (no matter how we build the tree)


• Total pointer space  bits


• Total 


Succinctness =  bits total

nw ≥ n log n

Θ(n log n)

nw + O(n log n)

nw + o(n log n) 👆 👆

👆 👆 👆 👆
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Previous literature replaces pointers with other structure with  bits


• [Cordova, Navarro. TCS ’16][Davoodi et al. MCS ‘217][Farzan, Munro. ICALP ’11], 


• These structures are small but slow

2n + o(n)
…

Succinct trees: what’s known?

Previous New

Space
Very very very small
 Very very small


Time Polylogarithmic (or more) overhead

for many operations

O(1) time overhead 

for all operations

nw+2n + o(n) bits nw+o(n log n) bits



Ok, but how do we reduce the size of pointers?
Let’s look at one node:


• The only information we have is the key


We can reduce the bits in 👆 if it’s a function of


• How???

👆 👆

👆 👆 👆 👆



Tiny pointers through hash tables?
Store needed information in a hash table


• The information we need is key of left child or key of right child

A

B C

ED F G

Hash Table

Query(“left child of B”) D→

Good news: No pointers at all!

Bad news: Space overhead from hash table (e.g. each key is stored twice in table)



Tiny pointers through dereference tables
Our idea: Replace hash table with a dereference table 

• What’s a dereference table?

A

B C

ED F G

Dereference Table

Query(B, left-tiny-pointer) D, left-tiny-pointer, right-tiny-pointer→

The tiny pointers are (small) hints that let us save space



Pointers vs Hash Tables vs Dereference Tables

Hash Tables

Insert(key, value)

Update(key, value)

Query(key)

Delete(key)

Dereference Tables

Insert(key, value) tiny-ptr→

Update(key, value, tiny-ptr)

Query(key, tiny-ptr)

Delete(key, tiny-ptr)

Pointers

Malloc ptr; *ptr = value→

*ptr = value

*ptr

Free(ptr)
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Key observation:  balls can be 
thrown into this array without a bin 
overflowing w.h.p.

n

Inserting an item : 

hash into some bin 

find an empty slot and store 

return the offset of the slot

x, v
h(x)

v

Finding item , ptr: 

go to ptr’th item in 

return value stored there

x
h(x)

ptr

Query( ) returns x, ptr v

So far: tiny pointers have
 bitsO(log log n)

h(x)

And there’s minimal space 
wastage from size of table



BSTs through tiny pointers (take 1)
Theorem: Any rotation-based BST can be implemented with 


• -time overhead per operation 


• Space 

O(1)

nw + O(n log log n)

A

B C

ED F G



Revisiting Dereference Tables
Hash Table Dereference TablePointers

Insert(key, value) Insert(key, value) tiny-ptr→Malloc ptr; *ptr = value→
Update(key, value) Update(key, value, tiny-ptr)*ptr = value

Query(key) Query(key, tiny-ptr)*ptr
Delete(key) Delete(key, tiny-ptr)Free(ptr)

Positive and negative queries Only positive queriesOnly positive queries
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Revisiting Dereference Tables
Hash Table Dereference TablePointers

Insert(key, value) Insert(key, value) tiny-ptr→Malloc ptr; *ptr = value→
Update(key, value) Update(key, value, tiny-ptr)*ptr = value

Query(key) Query(key, tiny-ptr)*ptr
Delete(key) Delete(key, tiny-ptr)Free(ptr)

Positive and negative queries Only positive queriesOnly positive queries
Stable or not StableStable

Arbitrary Associativity Low associativityArbitrary Associativity

Associativity: # of locations 
and item can go



Size of hash and dereference tables:
Hash tables:


• [Bender, FC, Kuszmaul, Kuszmaul, Liu STOC 22]: There is a hash table with -time lookups such that 


• For any integer , insertions/deletions take time  w.h.p.


• Space is  bits


• [Li, Liang, Yu, Zhou FOCS 23]: This is optimal for -time lookup hash tables


Dereference tables:

• [Bender, Conway, FC, Kuszmaul, Tagliavini SODA 23]: The optimal dereference tables with -time looks with 

 cells has associativity 


• So tiny pointers have  bits; and this is tight

O(1)

d ≥ 1 d

log (u
n) + O(n log(d+1) n) = n log u/n + +O(n log(d+1) n)

O(1)

O(1)
(1 + ϵ)n O(εO(1) log log n)

O(log log log n + log ε−1)



BST through Tiny Pointers (take 2)
Better theorem: Any rotation-based BST can be implemented with -time 
overhead and space 

O(1)
nw + O(n log log log n)

A

B C

ED F G



From Pointers to Retrievers



From Pointers to Retrievers



Pointers vs Retrievers

Pointer

queries are computed from

key, ptr, random bits

Retriever

queries gets to use an 

auxiliary data structure


in addition to key, ptr, random bits

We’ll see why we care about the difference



Tiny Pointers Bounds
Theorem: Can we build a dereference table on -bit items, where:


• Each operation takes  time


• Table size is  bits


• Pointer size is  bits


Theorem: Matching lower bound.  Tradeoff curve is tight!

w
O(1)

(1 + ε)nw

O(log ε−1 + log log log n)



Better Tiny Pointers Bounds
Theorem: Can we build a dereference table on -bit items, where:
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• Expected pointer size is  bits
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Tiny Retriever Bounds
Theorem: Can we build a dereference table on -bit items, where:


• Each operation takes  time


• Table size is  bits  bits, for any constant 


• Expected pointer size is  bits


w
O(1)

nw + O(n log log⋯log n) = nw + O(n log(k) n) k

O(1)

Optimal Hash Table

Retriever

Dereference table with ε = 1



BSTs through tiny retrievers
Theorem: Any rotation-based BST can be implemented with -time 
overhead and space 

O(1)
nw + O(n log log⋯log log n)

A

B C

ED F G



Previous literature replaces pointers with other structure with  bits

• [Cordova, Navarro. TCS ’16][Davoodi et al. MCS ‘217][Farzan, Munro. ICALP ’11], 


• These structures are small but slow

2n + o(n)
…

Succinct trees: what’s known?

Previous New

Space
Very very very small
 Very very small


Time Polylogarithmic (or more) overhead

for many operations

O(1) time overhead 

for all operations

nw+2n + o(n) bits nw+O(n log log…log n) bits



Tiny Pointers/Retriever solve many open problems
Space efficient stable dictionaries


• [Demaine, Meyer auf der Heide, Pagh, Paˇtras ̧cu ’06], [Sanders ’18], [Bender et al. ’21] 


Space efficient dictionaries with variable-size value

• [Arbitman, Naor, Segev ’10], [Bercea, Even ’14], [Bercea, Even ’19] 


The internal-memory stash problem

• [Larson, Kaijla ’84], [Gonnet, Larson ’88], [Larson ’88] 


Some use pointers, some retrievers



Tiny Pointer Open Problem
How do you use them in graphs?


• This is hard because multiple “owners of pointers” need to be able to point to the same 
location


• Maybe this is as hard as the general pointer problem?



And now for something 
completely different



Low Associativity Paging



Paging Problem
Classic online problem


• Cache of size 


• Sequence  of page requests


• Cost model for an algorithm to service page  is:


Famously [Seator, Tarjan 85], various page eviction algorithms are 2-competitive with 
resource augmentation of 2.


• But this result only applies to fully associative caches

m

p1, p2, …

pi

cost(pi) = {0  if pi is in the cache
1  choose a page to evict and store pi



What about paging on limited 
associativity caches?



Paging on low-associativity caches
Almost all caches in the world have low associativity


• But almost all theoretical results only apply to fully associative caches


Questions:

• How does paging work on low-associativity caches?


• Can we design a very low associativity cache where we can page very well?



Associativity of RAM or of Page Evictions?
Normally we think of the associativity of a cache as a hardware constraint


But it can also be a feature of the page eviction algorithm

RAM
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Associativity of RAM or of Page Evictions?
Normally we think of the associativity of a cache as a hardware constraint


But it can also be a feature of the page eviction algorithm

RAM

We’ll see examples where the each 
matters 

… oh, and we’ll see what this has to 
do with tiny pointers



Associativity of Page Evictions
Normally we think of the associativity of a cache as a hardware constraint


But it can also be a feature of the page eviction algorithm

RAM

In either case, the associativity of a page eviction algo is


• max # of location a page can map to


• Here pink maps to three locations


• And if we ever see pink again, it maps to the same 
three locations
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Associativity of Page Evictions
Normally we think of the associativity of a cache as a hardware constraint


But it can also be a feature of the page eviction algorithm

RAM

The page eviction algorithm may only evict one of the 
three pink pages



Associativity of 1
Taking page eviction associativity to the extreme 

RAM

There will be lots of contention for the same slots




Associativity of 1
Taking page eviction associativity to the extreme

RAM

There will be lots of contention for the same slots


• So there will be lots and lots of paging


How much memory would we need to match the 
paging cost of a fully associative?


•  by birthday paradox
Ω(m2)



How low can you go?
How low can associativity be without blowing up the paging cost?


And without blowing up the size of the cache?



Key concept: set vs general associative caches
A set associative cache partitions the cache 
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size of the largest partition — usually all 
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Key concept: set vs general associative caches
A set associative cache partitions the cache 


• Any page maps to a single partition


• It can go to any position in that partition

The associativity of such a cache is the  
size of the largest partition — usually all 

partitions have the same size

In a general -associative cache, each 
page can map to up to  pages (not 

necessarily a partition)

d
d



Key concept: set vs general associative caches
A set associative cache partitions the cache 


• Any page maps to a single partition


• It can go to any position in that partition

Almost all hardware is either fully 
associative or set associative

So how does the associativity of a  
set-associative cache affect  

the amount of paging?



How should we  
measure the paging?



Competitive analysis
Definition:  is -competitive with  with high probability, using -resource 
augmentation, on request sequences of length , if 
 
 
w.h.p., for every request sequence  with , where .

𝒜 c ℬ r
ℓ

σ |σ | ≤ ℓ k = r ⋅ k′￼
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Definition:  is -competitive with  with high probability, using -resource 
augmentation, on request sequences of length , if 
 
 

w.h.p., for every request sequence  with , where .

𝒜 c ℬ r
ℓ

σ |σ | ≤ ℓ k = r ⋅ k′￼

C(𝒜k, σ) ≤ c ⋅ C(ℬk′￼
, σ) + O(1)

Paging cost of  
with cache size 

𝒜
k

Paging cost of  
with cache size 

ℬ
k′￼



Related work

Competitive analysis

• Fully associative algorithms vs. fully associative OPT


• [Sleator & Tarjan ’85, Fiat et al. ’91, Young ’94, Dorrigiv et al. ’09, …] 

So how does the associativity of a set-associative cache affect the amount of paging?

Not set associative
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• Limited associative algorithms vs. limited associative OPT
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So how does the associativity of a set-associative cache affect the amount of paging?

This baseline doesn’t help to

understand the effect of 
reducing associativity



Related work

Competitive analysis

• Fully associative algorithms vs. fully associative OPT


• [Sleator & Tarjan ’85, Fiat et al. ’91, Young ’94, Dorrigiv et al. ’09, …]


• Limited associative algorithms vs. limited associative OPT


• [Brehob et al. ’01, Peserico ’03, Mendel & Seiden ’04, Buchbinder et al. ’14]


Competitive analysis assuming  is distributional

• Set-associative algorithms vs. fully associative algorithms


• [Smith ’54, Smith ’55, Rao ’78]

σ

So how does the associativity of a set-associative cache affect the amount of paging?

Real workloads 
can be adversarial
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Related work

Theorems in prior works are not tight enough

Traditional competitive analyses:


• Vs. OPT, -competitive, -resource augmentationO(1) O(1)

We need:


• Vs. LRU, -competitive, -resource augmentation(1 + o(1)) (1 + o(1))

Use practical algorithm 
as baseline

Tighter 
results

So how does the associativity of a set-associative cache affect the amount of paging?



A threshold phenomenon for set-associative caches



A threshold phenomenon for set-associative caches
Theorem: If , then -way set-associative LRU on a cache of 
size  is -competitive with fully associative LRU w.h.p., using 
-resource augmentation. [Bender, Das, FC, Tagliavini SPAA ’23]

d = ω(log m) d
m 1 (1 + o(1))
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A threshold phenomenon for set-associative caches
Theorem: If , then -way set-associative LRU on a cache of 
size  is -competitive with fully associative LRU w.h.p., using 
-resource augmentation. [Bender, Das, FC, Tagliavini SPAA ’23]

d = ω(log m) d
m 1 (1 + o(1))

Theorem: If , then -way set-associative LRU on a cache of size 
 is -competitive with fully associative LRU, using  any polynomial 

resource augmentation. [Bender, Das, FC, Tagliavini SPAA ’23]

d = o(log m) d
m ω(1)

Takehome message:  Current set-associative cache (IRL) are a little too small



Enough about existing caches



What if we can design a limited 
associativity eviction policy?

Spoiler: this will get us back to tiny pointers



General associativity
Having general associativity changes things


• Consider, again, a partitioned cache


• Each page maps to two sets and evicts the LRU page in the union of the two sets

Theorem: The LRU-of-two-sets algorithm with 
associativity  on a cache of size 

 is -competitive vs full 
associative LRU on a cache of size  . [Bender,  
Bhattacharjee, Conway, FC, Johnson, Kannan, Kuszmaul, Mukherjee, Porter, Tagliavini, Vorobyeva, 
West SPAA ’21]

O(log log m)
m + (m/log m) (1 + o(1))

m

Is this the lowest associativity you can get?



General associativity
Theorem: For any , there is a -associative paging algorithm that is 

-competitive vs fully associative LRU with  resource 
augmentation. [In preparation.]

d = ω(1) d
(1 + o(1)) (1 + o(1))

Consequence: you can specify the 
location of any page in the cache 

using any  number of bits without 
blowing up the paging costs.

ω(1)



Relationship with Dereference Tables
Theorem: You can specify the location of any page in the cache using any 

 number of bits without blowing up the paging costs.ω(1)

Dereference tables: low associativity 
vs probability of failing

Low associativity paging: low 
associativity vs probability of paging

Both: tiny pointers



Why do we want tiny pointers 
into a cache?



How does paging actually work?
Programs refer to pages by a virtual addresses


Computers refer to pages by physical addresses 


• Physical address  location in the cache


Every memory reference requires an address translation 

≈

This is slow so there is a very small hardware 
cache called a TLB to make this fast



Paging Problem
Which leads us to a more complete cost model for paging:


Sociological note:

• Theoreticians want to minimize the number of time we hit the third line (cost of a RAM miss)


• Systems people want to minimize the number of times we hit the second line 

cost(pi) =
0  if pi is in the RAM and translation is in TLB
ϵ  if pi is in the RAM but translation is not in TLB
1  if pi is not in RAM



Using tiny pointers in TLBs



Without getting into details
TLB is a piece of hardware


• And we can’t make it much bigger


• It consists of a bunch of (virtual, physical) address pairs


We changed the paging algorithm to make tiny physical pointers


We implemented a TLB that consists of (range of virtual addresses, sequence 
of tiny physical addresses)


This works in practice: ASPLOS best paper + VMware is building a chip using 
this idea



The story of tiny pointers

Tiny physical addresses for 
address translations

Iceberg Hash Tables [Pandey, Bender, Conway, 
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Tiny pointers were born out of 
practical considerations related to 

virtual memory systems.



What’s next, after tiny pointers and retrievers?
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Tiny hounds!



Tiny hounds!
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