
How big is a pointer?
And what’s the point of asking?

Martín Farach-Colton
New York University, USA

How big is a pointer?

How big is a pointer?
To address a space of size n

How big is a pointer?
To address a space of size n

 bits≥ log n

How big is a pointer?
To address a space of size n

 bits≥ log n

The end?

Can we compress pointers?

Impossible in general

This talk is about how to make this impossibility a reality for interesting cases

Tiny Pointers: -bit pointerso(log n)

Can we compress pointers?

Questions:

• How?

• Why? When is the size of pointers a bottleneck?

In this talk:

• Theory of tiny pointers [Bender, Conway, FC, Kuszmaul, Tagliavini SODA ’23]

• Uses of tiny pointers

Tiny Pointers: -bit pointerso(log n)

A running example of how and why
for Tiny Pointers:

Succinct Search Trees

When is a search trees succinct?
Consider your favorite binary search tree: red-black, splay, …

How much space does it take?

• Total pivot key space bits (no matter how we build the tree)

• Total pointer space bits

• Total

Succinctness = bits total

nw ≥ n log n

Θ(n log n)

nw + O(n log n)

nw + o(n log n) 👆 👆

👆 👆 👆 👆

When is a search trees succinct?
Consider your favorite binary search tree: red-black, splay, …

How much space does it take?

• Total pivot key space bits (no matter how we build the tree)

• Total pointer space bits

• Total

Succinctness = bits total

nw ≥ n log n

Θ(n log n)

nw + O(n log n)

nw + o(n log n) 👆 👆

👆 👆 👆 👆

Previous literature replaces pointers with other structure with bits

• [Cordova, Navarro. TCS ’16][Davoodi et al. MCS ‘217][Farzan, Munro. ICALP ’11],

• These structures are small but slow

2n + o(n)
…

Succinct trees: what’s known?

Previous New

Space
Very very very small
 Very very small

Time Polylogarithmic (or more) overhead

for many operations

O(1) time overhead

for all operations

nw+2n + o(n) bits nw+o(n log n) bits

Ok, but how do we reduce the size of pointers?
Let’s look at one node:

• The only information we have is the key

We can reduce the bits in 👆 if it’s a function of

• How???

👆 👆

👆 👆 👆 👆

Tiny pointers through hash tables?
Store needed information in a hash table

• The information we need is key of left child or key of right child

A

B C

ED F G

Hash Table

Query(“left child of B”) D→

Good news: No pointers at all!

Bad news: Space overhead from hash table (e.g. each key is stored twice in table)

Tiny pointers through dereference tables
Our idea: Replace hash table with a dereference table

• What’s a dereference table?

A

B C

ED F G

Dereference Table

Query(B, left-tiny-pointer) D, left-tiny-pointer, right-tiny-pointer→

The tiny pointers are (small) hints that let us save space

Pointers vs Hash Tables vs Dereference Tables

Hash Tables

Insert(key, value)

Update(key, value)

Query(key)

Delete(key)

Dereference Tables

Insert(key, value) tiny-ptr→

Update(key, value, tiny-ptr)

Query(key, tiny-ptr)

Delete(key, tiny-ptr)

Pointers

Malloc ptr; *ptr = value→

*ptr = value

*ptr

Free(ptr)

A simple Dereference Table

0

1

2

⋮

polylog n Array of size:
Bins of size:

(1 + 1/log n)n
polylog n

A simple Dereference Table

0

1

2

⋮

polylog n Array of size:
Bins of size:

(1 + 1/log n)n
polylog n

v

Inserting an item :

hash into some bin

find an empty slot and store

return the offset of the slot

x, v
h(x)

v

A simple Dereference Table

0

1

2

⋮

polylog n

v
h(x)

Array of size:
Bins of size:

(1 + 1/log n)n
polylog n

Inserting an item :

hash into some bin

find an empty slot and store

return the offset of the slot

x, v
h(x)

v

A simple Dereference Table

0

1

2

⋮

polylog n

v

h(x)

Array of size:
Bins of size:

(1 + 1/log n)n
polylog n

Inserting an item :

hash into some bin

find an empty slot and store

return the offset of the slot

x, v
h(x)

v

A simple Dereference Table

0

1

2

⋮

polylog n

h(x)h(x)

return: 4

Array of size:
Bins of size:

(1 + 1/log n)n
polylog n

Inserting an item :

hash into some bin

find an empty slot and store

return the offset of the slot

x, v
h(x)

v

4 v

A simple Dereference Table

0

1

2

⋮

polylog n Array of size:
Bins of size:

(1 + 1/log n)n
polylog n

Key observation: balls can be
thrown into this array without a bin
overflowing w.h.p.

n

Inserting an item :

hash into some bin

find an empty slot and store

return the offset of the slot

x, v
h(x)

v

A simple Dereference Table

0

1

2

⋮

polylog n

Query()x, ptr

Array of size:
Bins of size:

(1 + 1/log n)n
polylog n

Key observation: balls can be
thrown into this array without a bin
overflowing w.h.p.

n

Finding item , ptr:

go to ptr’th item in

return value stored there

x
h(x)

Inserting an item :

hash into some bin

find an empty slot and store

return the offset of the slot

x, v
h(x)

v

A simple Dereference Table

0

1

2

⋮

polylog n

Query()x, ptr

Array of size:
Bins of size:

(1 + 1/log n)n
polylog n

Key observation: balls can be
thrown into this array without a bin
overflowing w.h.p.

n

Inserting an item :

hash into some bin

find an empty slot and store

return the offset of the slot

x, v
h(x)

v

Finding item , ptr:

go to ptr’th item in

return value stored there

x
h(x)

h(x)

A simple Dereference Table

0

1

2

⋮

polylog n

v

Array of size:
Bins of size:

(1 + 1/log n)n
polylog n

Key observation: balls can be
thrown into this array without a bin
overflowing w.h.p.

n

h(x)

Inserting an item :

hash into some bin

find an empty slot and store

return the offset of the slot

x, v
h(x)

v

Finding item , ptr:

go to ptr’th item in

return value stored there

x
h(x)

ptr

Query()x, ptr

A simple Dereference Table

0

1

2

⋮

polylog n

v

Array of size:
Bins of size:

(1 + 1/log n)n
polylog n

Key observation: balls can be
thrown into this array without a bin
overflowing w.h.p.

n

Inserting an item :

hash into some bin

find an empty slot and store

return the offset of the slot

x, v
h(x)

v

Finding item , ptr:

go to ptr’th item in

return value stored there

x
h(x)

ptr

Query() returns x, ptr v
h(x)

A simple Dereference Table

0

1

2

⋮

polylog n

v

Array of size:
Bins of size:

(1 + 1/log n)n
polylog n

Key observation: balls can be
thrown into this array without a bin
overflowing w.h.p.

n

Inserting an item :

hash into some bin

find an empty slot and store

return the offset of the slot

x, v
h(x)

v

Finding item , ptr:

go to ptr’th item in

return value stored there

x
h(x)

ptr

Query() returns x, ptr v

So far: tiny pointers have
 bitsO(log log n)

h(x)

A simple Dereference Table

0

1

2

⋮

polylog n

v

Array of size:
Bins of size:

(1 + 1/log n)n
polylog n

Key observation: balls can be
thrown into this array without a bin
overflowing w.h.p.

n

Inserting an item :

hash into some bin

find an empty slot and store

return the offset of the slot

x, v
h(x)

v

Finding item , ptr:

go to ptr’th item in

return value stored there

x
h(x)

ptr

Query() returns x, ptr v

So far: tiny pointers have
 bitsO(log log n)

h(x)

And there’s minimal space
wastage from size of table

BSTs through tiny pointers (take 1)
Theorem: Any rotation-based BST can be implemented with

• -time overhead per operation

• Space

O(1)

nw + O(n log log n)

A

B C

ED F G

Revisiting Dereference Tables
Hash Table Dereference TablePointers

Insert(key, value) Insert(key, value) tiny-ptr→Malloc ptr; *ptr = value→
Update(key, value) Update(key, value, tiny-ptr)*ptr = value

Query(key) Query(key, tiny-ptr)*ptr
Delete(key) Delete(key, tiny-ptr)Free(ptr)

Positive and negative queries Only positive queriesOnly positive queries

Revisiting Dereference Tables
Hash Table Dereference TablePointers

Insert(key, value) Insert(key, value) tiny-ptr→Malloc ptr; *ptr = value→
Update(key, value) Update(key, value, tiny-ptr)*ptr = value

Query(key) Query(key, tiny-ptr)*ptr
Delete(key) Delete(key, tiny-ptr)Free(ptr)

Positive and negative queries Only positive queriesOnly positive queries
Stable or not StableStable

Stable = Slots (or contents) can’t
move once slots have allocated

Revisiting Dereference Tables
Hash Table Dereference TablePointers

Insert(key, value) Insert(key, value) tiny-ptr→Malloc ptr; *ptr = value→
Update(key, value) Update(key, value, tiny-ptr)*ptr = value

Query(key) Query(key, tiny-ptr)*ptr
Delete(key) Delete(key, tiny-ptr)Free(ptr)

Positive and negative queries Only positive queriesOnly positive queries
Stable or not StableStable

Arbitrary Associativity Low associativityArbitrary Associativity

Associativity: # of locations
and item can go

Size of hash and dereference tables:
Hash tables:

• [Bender, FC, Kuszmaul, Kuszmaul, Liu STOC 22]: There is a hash table with -time lookups such that

• For any integer , insertions/deletions take time w.h.p.

• Space is bits

• [Li, Liang, Yu, Zhou FOCS 23]: This is optimal for -time lookup hash tables

Dereference tables:

• [Bender, Conway, FC, Kuszmaul, Tagliavini SODA 23]: The optimal dereference tables with -time looks with

 cells has associativity

• So tiny pointers have bits; and this is tight

O(1)

d ≥ 1 d

log (u
n) + O(n log(d+1) n) = n log u/n + +O(n log(d+1) n)

O(1)

O(1)
(1 + ϵ)n O(εO(1) log log n)

O(log log log n + log ε−1)

BST through Tiny Pointers (take 2)
Better theorem: Any rotation-based BST can be implemented with -time
overhead and space

O(1)
nw + O(n log log log n)

A

B C

ED F G

From Pointers to Retrievers

From Pointers to Retrievers

Pointers vs Retrievers

Pointer

queries are computed from

key, ptr, random bits

Retriever

queries gets to use an

auxiliary data structure

in addition to key, ptr, random bits

We’ll see why we care about the difference

Tiny Pointers Bounds
Theorem: Can we build a dereference table on -bit items, where:

• Each operation takes time

• Table size is bits

• Pointer size is bits

Theorem: Matching lower bound. Tradeoff curve is tight!

w
O(1)

(1 + ε)nw

O(log ε−1 + log log log n)

Better Tiny Pointers Bounds
Theorem: Can we build a dereference table on -bit items, where:

• Each operation takes time

• Table size is bits

• Expected pointer size is bits

Theorem: Matching lower bound. Tradeoff curve is tight!

w
O(1)

(1 + ε)nw

O(log ε−1 + log log log n)

Tiny Retriever Bounds
Theorem: Can we build a dereference table on -bit items, where:

• Each operation takes time

• Table size is bits bits, for any constant

• Expected pointer size is bits

w
O(1)

nw + O(n log log⋯log n) = nw + O(n log(k) n) k

O(1)

Optimal Hash Table

Retriever

Dereference table with ε = 1

BSTs through tiny retrievers
Theorem: Any rotation-based BST can be implemented with -time
overhead and space

O(1)
nw + O(n log log⋯log log n)

A

B C

ED F G

Previous literature replaces pointers with other structure with bits

• [Cordova, Navarro. TCS ’16][Davoodi et al. MCS ‘217][Farzan, Munro. ICALP ’11],

• These structures are small but slow

2n + o(n)
…

Succinct trees: what’s known?

Previous New

Space
Very very very small
 Very very small

Time Polylogarithmic (or more) overhead

for many operations

O(1) time overhead

for all operations

nw+2n + o(n) bits nw+O(n log log…log n) bits

Tiny Pointers/Retriever solve many open problems
Space efficient stable dictionaries

• [Demaine, Meyer auf der Heide, Pagh, Paˇtras ̧cu ’06], [Sanders ’18], [Bender et al. ’21]

Space efficient dictionaries with variable-size value

• [Arbitman, Naor, Segev ’10], [Bercea, Even ’14], [Bercea, Even ’19]

The internal-memory stash problem

• [Larson, Kaijla ’84], [Gonnet, Larson ’88], [Larson ’88]

Some use pointers, some retrievers

Tiny Pointer Open Problem
How do you use them in graphs?

• This is hard because multiple “owners of pointers” need to be able to point to the same
location

• Maybe this is as hard as the general pointer problem?

And now for something
completely different

Low Associativity Paging

Paging Problem
Classic online problem

• Cache of size

• Sequence of page requests

• Cost model for an algorithm to service page is:

Famously [Seator, Tarjan 85], various page eviction algorithms are 2-competitive with
resource augmentation of 2.

• But this result only applies to fully associative caches

m

p1, p2, …

pi

cost(pi) = {0 if pi is in the cache
1 choose a page to evict and store pi

What about paging on limited
associativity caches?

Paging on low-associativity caches
Almost all caches in the world have low associativity

• But almost all theoretical results only apply to fully associative caches

Questions:

• How does paging work on low-associativity caches?

• Can we design a very low associativity cache where we can page very well?

Associativity of RAM or of Page Evictions?
Normally we think of the associativity of a cache as a hardware constraint

But it can also be a feature of the page eviction algorithm

RAM

Associativity of RAM or of Page Evictions?
Normally we think of the associativity of a cache as a hardware constraint

But it can also be a feature of the page eviction algorithm

RAM

Associativity of RAM or of Page Evictions?
Normally we think of the associativity of a cache as a hardware constraint

But it can also be a feature of the page eviction algorithm

RAM

We’ll see examples where the each
matters

… oh, and we’ll see what this has to
do with tiny pointers

Associativity of Page Evictions
Normally we think of the associativity of a cache as a hardware constraint

But it can also be a feature of the page eviction algorithm

RAM

In either case, the associativity of a page eviction algo is

• max # of location a page can map to

• Here pink maps to three locations

• And if we ever see pink again, it maps to the same
three locations

Associativity of Page Evictions
Normally we think of the associativity of a cache as a hardware constraint

But it can also be a feature of the page eviction algorithm

RAM

In either case, the associativity of a page eviction algo is

• max # of location a page can map to

• Here pink maps to three locations

• And if we ever see pink again, it maps to the same
three locations

Associativity of Page Evictions
Normally we think of the associativity of a cache as a hardware constraint

But it can also be a feature of the page eviction algorithm

RAM

The page eviction algorithm may only evict one of the
three pink pages

Associativity of 1
Taking page eviction associativity to the extreme

RAM

There will be lots of contention for the same slots

Associativity of 1
Taking page eviction associativity to the extreme

RAM

There will be lots of contention for the same slots

• So there will be lots and lots of paging

How much memory would we need to match the
paging cost of a fully associative?

• by birthday paradox
Ω(m2)

How low can you go?
How low can associativity be without blowing up the paging cost?

And without blowing up the size of the cache?

Key concept: set vs general associative caches
A set associative cache partitions the cache

Key concept: set vs general associative caches
A set associative cache partitions the cache

Key concept: set vs general associative caches
A set associative cache partitions the cache

• Any page maps to a single partition

• It can go to any position in that partition

Key concept: set vs general associative caches
A set associative cache partitions the cache

• Any page maps to a single partition

• It can go to any position in that partition

Key concept: set vs general associative caches
A set associative cache partitions the cache

• Any page maps to a single partition

• It can go to any position in that partition

Key concept: set vs general associative caches
A set associative cache partitions the cache

• Any page maps to a single partition

• It can go to any position in that partition

The associativity of such a cache is the
size of the largest partition — usually all

partitions have the same size

Key concept: set vs general associative caches
A set associative cache partitions the cache

• Any page maps to a single partition

• It can go to any position in that partition

The associativity of such a cache is the
size of the largest partition — usually all

partitions have the same size

In a general -associative cache, each
page can map to up to pages (not

necessarily a partition)

d
d

Key concept: set vs general associative caches
A set associative cache partitions the cache

• Any page maps to a single partition

• It can go to any position in that partition

Almost all hardware is either fully
associative or set associative

So how does the associativity of a
set-associative cache affect

the amount of paging?

How should we
measure the paging?

Competitive analysis
Definition: is -competitive with with high probability, using -resource
augmentation, on request sequences of length , if 
 
 
w.h.p., for every request sequence with , where .

𝒜 c ℬ r
ℓ

σ |σ | ≤ ℓ k = r ⋅ k′

Competitive analysis
Definition: is -competitive with with high probability, using -resource
augmentation, on request sequences of length , if 
 
 

w.h.p., for every request sequence with , where .

𝒜 c ℬ r
ℓ

σ |σ | ≤ ℓ k = r ⋅ k′

C(𝒜k, σ) ≤ c ⋅ C(ℬk′
, σ) + O(1)

Paging cost of  
with cache size

𝒜
k

Paging cost of  
with cache size

ℬ
k′

Related work

Competitive analysis

• Fully associative algorithms vs. fully associative OPT

• [Sleator & Tarjan ’85, Fiat et al. ’91, Young ’94, Dorrigiv et al. ’09, …] 

So how does the associativity of a set-associative cache affect the amount of paging?

Not set associative

Related work

Competitive analysis

• Fully associative algorithms vs. fully associative OPT

• [Sleator & Tarjan ’85, Fiat et al. ’91, Young ’94, Dorrigiv et al. ’09, …]

• Limited associative algorithms vs. limited associative OPT

• [Brehob et al. ’01, Peserico ’03, Mendel & Seiden ’04, Buchbinder et al. ’14] 

So how does the associativity of a set-associative cache affect the amount of paging?

This baseline doesn’t help to

understand the effect of 
reducing associativity

Related work

Competitive analysis

• Fully associative algorithms vs. fully associative OPT

• [Sleator & Tarjan ’85, Fiat et al. ’91, Young ’94, Dorrigiv et al. ’09, …]

• Limited associative algorithms vs. limited associative OPT

• [Brehob et al. ’01, Peserico ’03, Mendel & Seiden ’04, Buchbinder et al. ’14]

Competitive analysis assuming is distributional

• Set-associative algorithms vs. fully associative algorithms

• [Smith ’54, Smith ’55, Rao ’78]

σ

So how does the associativity of a set-associative cache affect the amount of paging?

Real workloads 
can be adversarial

Related work
So how does the associativity of a set-associative cache affect the amount of paging?

Related work

Theorems in prior works are not tight enough

So how does the associativity of a set-associative cache affect the amount of paging?

Related work

Theorems in prior works are not tight enough

Traditional competitive analyses:

• Vs. OPT, -competitive, -resource augmentationO(1) O(1)

So how does the associativity of a set-associative cache affect the amount of paging?

Related work

Theorems in prior works are not tight enough

Traditional competitive analyses:

• Vs. OPT, -competitive, -resource augmentationO(1) O(1)

We need:

• Vs. LRU, -competitive, -resource augmentation(1 + o(1)) (1 + o(1))

So how does the associativity of a set-associative cache affect the amount of paging?

Related work

Theorems in prior works are not tight enough

Traditional competitive analyses:

• Vs. OPT, -competitive, -resource augmentationO(1) O(1)

We need:

• Vs. LRU, -competitive, -resource augmentation(1 + o(1)) (1 + o(1))

Use practical algorithm 
as baseline

So how does the associativity of a set-associative cache affect the amount of paging?

Related work

Theorems in prior works are not tight enough

Traditional competitive analyses:

• Vs. OPT, -competitive, -resource augmentationO(1) O(1)

We need:

• Vs. LRU, -competitive, -resource augmentation(1 + o(1)) (1 + o(1))

Use practical algorithm 
as baseline

Tighter 
results

So how does the associativity of a set-associative cache affect the amount of paging?

A threshold phenomenon for set-associative caches

A threshold phenomenon for set-associative caches
Theorem: If , then -way set-associative LRU on a cache of
size is -competitive with fully associative LRU w.h.p., using
-resource augmentation. [Bender, Das, FC, Tagliavini SPAA ’23]

d = ω(log m) d
m 1 (1 + o(1))

A threshold phenomenon for set-associative caches
Theorem: If , then -way set-associative LRU on a cache of
size is -competitive with fully associative LRU w.h.p., using
-resource augmentation. [Bender, Das, FC, Tagliavini SPAA ’23]

d = ω(log m) d
m 1 (1 + o(1))

Theorem: If , then -way set-associative LRU on a cache of size
 is -competitive with fully associative LRU, using any polynomial

resource augmentation. [Bender, Das, FC, Tagliavini SPAA ’23]

d = o(log m) d
m ω(1)

A threshold phenomenon for set-associative caches
Theorem: If , then -way set-associative LRU on a cache of
size is -competitive with fully associative LRU w.h.p., using
-resource augmentation. [Bender, Das, FC, Tagliavini SPAA ’23]

d = ω(log m) d
m 1 (1 + o(1))

Theorem: If , then -way set-associative LRU on a cache of size
 is -competitive with fully associative LRU, using any polynomial

resource augmentation. [Bender, Das, FC, Tagliavini SPAA ’23]

d = o(log m) d
m ω(1)

Takehome message: Current set-associative cache (IRL) are a little too small

Enough about existing caches

What if we can design a limited
associativity eviction policy?

Spoiler: this will get us back to tiny pointers

General associativity
Having general associativity changes things

• Consider, again, a partitioned cache

• Each page maps to two sets and evicts the LRU page in the union of the two sets

Theorem: The LRU-of-two-sets algorithm with
associativity on a cache of size

 is -competitive vs full
associative LRU on a cache of size . [Bender,
Bhattacharjee, Conway, FC, Johnson, Kannan, Kuszmaul, Mukherjee, Porter, Tagliavini, Vorobyeva,
West SPAA ’21]

O(log log m)
m + (m/log m) (1 + o(1))

m

Is this the lowest associativity you can get?

General associativity
Theorem: For any , there is a -associative paging algorithm that is

-competitive vs fully associative LRU with resource
augmentation. [In preparation.]

d = ω(1) d
(1 + o(1)) (1 + o(1))

Consequence: you can specify the
location of any page in the cache

using any number of bits without
blowing up the paging costs.

ω(1)

Relationship with Dereference Tables
Theorem: You can specify the location of any page in the cache using any

 number of bits without blowing up the paging costs.ω(1)

Dereference tables: low associativity
vs probability of failing

Low associativity paging: low
associativity vs probability of paging

Both: tiny pointers

Why do we want tiny pointers
into a cache?

How does paging actually work?
Programs refer to pages by a virtual addresses

Computers refer to pages by physical addresses

• Physical address location in the cache

Every memory reference requires an address translation

≈

This is slow so there is a very small hardware
cache called a TLB to make this fast

Paging Problem
Which leads us to a more complete cost model for paging:

Sociological note:

• Theoreticians want to minimize the number of time we hit the third line (cost of a RAM miss)

• Systems people want to minimize the number of times we hit the second line

cost(pi) =
0 if pi is in the RAM and translation is in TLB
ϵ if pi is in the RAM but translation is not in TLB
1 if pi is not in RAM

Using tiny pointers in TLBs

Without getting into details
TLB is a piece of hardware

• And we can’t make it much bigger

• It consists of a bunch of (virtual, physical) address pairs

We changed the paging algorithm to make tiny physical pointers

We implemented a TLB that consists of (range of virtual addresses, sequence
of tiny physical addresses)

This works in practice: ASPLOS best paper + VMware is building a chip using
this idea

The story of tiny pointers

Tiny physical addresses for
address translations

Iceberg Hash Tables [Pandey, Bender, Conway,
FC, Kuszmaul, Tagliavini, Johnson SIGMOD ’23] + [Bender, Conway,

FC, Kuszmaul, Tagliavini JACM ’24]

Tiny Pointers Partition Hash Tables
[Bender, FC, Kuszmaul, Kuszmaul SOSA ’24]

The story of tiny pointers

Ttiny physical addresses for
address translations

Iceberg Hash Tables [Pandey, Bender, Conway,
FC, Kuszmaul, Tagliavini, Johnson SIGMOD ’23] + [Bender, Conway,

FC, Kuszmaul, Tagliavini JACM ’24]

Tiny Pointers Partition Hash Tables
[Bender, FC, Kuszmaul, Kuszmaul SOSA ’24]

Tiny pointers were born out of
practical considerations related to

virtual memory systems.

What’s next, after tiny pointers and retrievers?

What’s next, after tiny pointers and retrievers?

Tiny hounds!

Tiny hounds!

ThanksThanks

