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An Example
…

❃✾ ✾ ❁ ✾✾❁✿ ❃❁❃✾✾✾❁ ✿❁ ❃✾✾❁ ❁-
✾ ✿❁❁✾ ✾❃✿ ❃❃✾ ✾❁✾ ✿ ✾✿✾
✿❃✿ ✾ ✿❃ (TU Kaiserslautern).
❁❃❃✿ ✿ ❃✾❁✾✾✾✾✿✾ ❃✿✾✿❃❃ ✾ ❃✾-
✾❁❁✿❃❁ ✾
❃❃✿❃✿ ❃✿ (Simons Institute andUC Berkeley),
❃ ❃❃❃ ❁❁❃ (University of Salzburg),✾❃❃❃✿-
❃ ❃ (University of Salzburg).
❁ ✾ ✿✾❃✾ ❃✾❃❃❁✾❃❁ ✾✾ ❃❃ ✾ ✾✾
✾✾✾ (University of Pennsylvania),
❃❃ ❃ ✿ ❃ ❃ (University of Pennsylvania),
✾❃ ✾ (University of Pennsylvania).
❁❃❃ ✾❃ ✿❃✾ ✾✾ ✿ ✿✿❃❃ ✾ ✾
✾❃ ❃✾❁❃✾ ❃❃✾❃✿✾❁✾❁✾✾❁❃
(Reichman University, Herzliya, Israel and Birkbeck,
University of London), ❁✿❃❃ ❁✾✾✿❃❃ (UC
Berkeley and Max Planck Institute for Informatics,
SIC, Saarbrücken, Germany), ✾ ✾✾ ✾✾ (Max
Planck Institute for Informatics, SIC, Saarbrücken,
Germany).
✾✾ ❃✿ ❃❃❁❁✾ ❃ ✾✾❁✾❃✿❃❃ ✿✾❃-
❃✾✿✾❃✾✾
❃ ✾✾ ❃ ❃❃ (National Institute of Informatics).
❃ ❁❃✾ ✾ ❁ ✾ ❁✿❃❁❁❃ ✿❁✿❃✾❁✿❃❃
✾✾✾✾❃✾✿ ✾ ❃✾✾✾ (UniversitÃ© Paris CitÃ©,
CNRS, IRIF, F-75013, Paris, France);✾✾✾✾ ✿ ✾ ❃-
❃✾ (Universitat PolitÃ¨cnica de Catalunya)…

…
✿ ✿❃✾✿❃✾✿❁✾❃✿✿✾❁✿✾❁❃❁❃✿-
❁✾ ✾ ❃✾✾✾✾❃❁ ❃ ✿❃✾ ✿✿ ❃ ✿❁✿ ❃❁
✾✾❃✾ ✾ ❃ ✾ (ETH Zurich); ❃✾ ❃✾ ❁✾❃❃-
❃ ✾❃ (Toyota Technological Institute at Chicago)
✾❁✾ ✾❃✿❃✾✾ ✿✾✾ ✿❃✾✾❃✾ ❃❃❃❃❁-
✾ ✾✿❁ ❁❁ ✾❁✾ ❃
✿❃✾❁ (Merton College, University of Oxford,
United Kingdom); ❃❁ ❃ ❃❃✾ ✿ (Mathematical
Institute, University of Bonn, Germany); ✾ ✾✾ ✾-
✾ (Max Planck Institute for Informatics, Saarland
Informatics Campus (SIC), Saarbr|cken, Germany)
✾❃✾ ✿✿❃❃ ✾ ✿❃ ❁ ✾❃✿❃✾✿ ✾ ❃✾❃-
✿✾✾ ❃ ✿❁✾✿❃✾✾
✾❃ ❃✾❁✾✿ ✾ (The Academic College of Tel
Aviv-Yafo), ❁✿❃❃ ❁✾✾✿❃❃ (UC Berkeley), ❁ -
❃✾ ✾❃✿ (Weizmann Institute of Science), ❃-
❃❃❃ ❃ (University of California San Diego).
✾ ✾❁✿✾✾ ❁✾❁✾ ✿❃❁❁✾❁✾ ✾✾ ❃✾-
✿✿❁✿ ❃ ✾❃ ❃ ❁✾ ✿ ✿✾ ✿ ✾❃✾ ❃
❃❃✾❁❁❁✾ ✾✿ ✾ ✾✿❃❁✾❃ ✿❁❁ ✿✾ -
✾ (CISPA Helmholtz Center for Information Security,
Saarbrücken);✿❃ ✾ ✾ (Simon Fraser University);
✾❁✿ ✿❃❃ ❃ (Duke University);✾ ✾✾✾❃✾ ✾-
✾ (CISPA Helmholtz Center for Information Security,
Saarbrücken); ✾ ✾✾ ✾✾ (Max Planck Institute
for Informatics, SIC, Saarbrücken)…

…
✾❁✿✾ ✿ ❁❁✿❃❁ ✿ ❃✾ ❁❁✾❃ ✿❁❃✿✾-
✾❃❁❁
❁✾ ✿ ✾ (Alibaba Group); ✾✿ ✾❁ ✾ (Microsoft
Research); ✾ ✾❃✾ ❁ (Washington University in
St. Louis); ❃ ✾ (Columbia University); ❃❁ ✾❁✾
(University of Chicago)
❃ ✾ ❁✾ ✾✾❃ ✾❁ ❃✾✾❁ ❁❁✾❁✿✾-
❃❃ ✿❃✾❁❁❁❃❃✾❃❃ ✿❃✾❁❁❁ ❃
✿❁✿ ✿✾❃ (Stony Brook University); ❁✿❃❃ ❁-
✾✾✿❃❃ (Max Planck Institute for Informatics,
Saarbruecken)
✾❃✾✾ ✾✾ ❃✾✾❁❁✿❃❁ ❃✾ ✿ ❃❁❁ ✿✾-
✾ ✾✾✾ ❃ ✾❃❃❁ ❃ ✿✾❁✾❁ ✿ ✾✾✾✿ ❃ -
❃✿ ✾✾ ✾❃❃✾ ❃✿❃ ❁✾❃
❁❃ ✾❁❃✿❁❃❃ (Univ. Bordeaux, CNRS,
Bordeaux INP, LaBRI, France); ✾❃ ❁❁❁✾ ❃ ❃-
(University of Warsaw, Poland); ❃❁✾ ✾ ✾✾-
(Saarland University and Max Planck Institute for
Informatics, SaarbrÃ¼cken, Germany); ❃ ❃ ✾✾-
✾✾❃ ✾ ✾ (University of Warsaw, Poland)
❃❁❃❃ ❃✾✾❁ ✿❁❁ ✾✾ ❃❃ ❃❃ ✾✿ ❃✿-
❃❃ ❁ ✿ ✿✿❃✾ ❁ ✿ ❁✿
✿❃✿❃✾ ✾ ✾ (ETH ZÃ¼rich); ✿❃ ❃✾ ✾✾-
❃❃ ✿ ❃✿❃ ❃ (TU Berlin)
❁ ✾ ✾ ❃ ✾ ❃❃✿✾✾ ✾
✿❃✿✿✾✾ ❁❁✿✾❁❁❃ ✿❃❃✾ ✾❃❃✾✿❃
(Carnegie Mellon University)…
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An Example
…

❃✾ ✾ ❁ ✾✾❁✿ ❃❁❃✾✾✾❁ ✿❁ ❃✾✾❁ ❁-
✾ ✿❁❁✾ ✾❃✿ ❃❃✾ ✾❁✾ ✿ ✾✿✾
✿❃✿ ✾ ✿❃ (TU Kaiserslautern).
❁❃❃✿ ✿ ❃✾❁✾✾✾✾✿✾ ❃✿✾✿❃❃ ✾ ❃✾-
✾❁❁✿❃❁ ✾
❃❃✿❃✿ ❃✿ (Simons Institute andUC Berkeley),
❃ ❃❃❃ ❁❁❃ (University of Salzburg),✾❃❃❃✿-
❃ ❃ (University of Salzburg).
❁ ✾ ✿✾❃✾ ❃✾❃❃❁✾❃❁ ✾✾ ❃❃ ✾ ✾✾
✾✾✾ (University of Pennsylvania),
❃❃ ❃ ✿ ❃ ❃ (University of Pennsylvania),
✾❃ ✾ (University of Pennsylvania).
❁❃❃ ✾❃ ✿❃✾ ✾✾ ✿ ✿✿❃❃ ✾ ✾
✾❃ ❃✾❁❃✾ ❃❃✾❃✿✾❁✾❁✾✾❁❃
(Reichman University, Herzliya, Israel and Birkbeck,
University of London), ❁✿❃❃ ❁✾✾✿❃❃ (UC
Berkeley and Max Planck Institute for Informatics,
SIC, Saarbrücken, Germany), ✾ ✾✾ ✾✾ (Max
Planck Institute for Informatics, SIC, Saarbrücken,
Germany).
✾✾ ❃✿ ❃❃❁❁✾ ❃ ✾✾❁✾❃✿❃❃ ✿✾❃-
❃✾✿✾❃✾✾
❃ ✾✾ ❃ ❃❃ (National Institute of Informatics).
❃ ❁❃✾ ✾ ❁ ✾ ❁✿❃❁❁❃ ✿❁✿❃✾❁✿❃❃
✾✾✾✾❃✾✿ ✾ ❃✾✾✾ (UniversitÃ© Paris CitÃ©,
CNRS, IRIF, F-75013, Paris, France);✾✾✾✾ ✿ ✾ ❃-
❃✾ (Universitat PolitÃ¨cnica de Catalunya)…

…
✿ ✿❃✾✿❃✾✿❁✾❃✿✿✾❁✿✾❁❃❁❃✿-
❁✾ ✾ ❃✾✾✾✾❃❁ ❃ ✿❃✾ ✿✿ ❃ ✿❁✿ ❃❁
✾✾❃✾ ✾ ❃ ✾ (ETH Zurich); ❃✾ ❃✾ ❁✾❃❃-
❃ ✾❃ (Toyota Technological Institute at Chicago)
✾❁✾ ✾❃✿❃✾✾ ✿✾✾ ✿❃✾✾❃✾ ❃❃❃❃❁-
✾ ✾✿❁ ❁❁ ✾❁✾ ❃
✿❃✾❁ (Merton College, University of Oxford,
United Kingdom); ❃❁ ❃ ❃❃✾ ✿ (Mathematical
Institute, University of Bonn, Germany); ✾ ✾✾ ✾-
✾ (Max Planck Institute for Informatics, Saarland
Informatics Campus (SIC), Saarbr|cken, Germany)
✾❃✾ ✿✿❃❃ ✾ ✿❃ ❁ ✾❃✿❃✾✿ ✾ ❃✾❃-
✿✾✾ ❃ ✿❁✾✿❃✾✾
✾❃ ❃✾❁✾✿ ✾ (The Academic College of Tel
Aviv-Yafo), ❁✿❃❃ ❁✾✾✿❃❃ (UC Berkeley), ❁ -
❃✾ ✾❃✿ (Weizmann Institute of Science), ❃-
❃❃❃ ❃ (University of California San Diego).
✾ ✾❁✿✾✾ ❁✾❁✾ ✿❃❁❁✾❁✾ ✾✾ ❃✾-
✿✿❁✿ ❃ ✾❃ ❃ ❁✾ ✿ ✿✾ ✿ ✾❃✾ ❃
❃❃✾❁❁❁✾ ✾✿ ✾ ✾✿❃❁✾❃ ✿❁❁ ✿✾ -
✾ (CISPA Helmholtz Center for Information Security,
Saarbrücken);✿❃ ✾ ✾ (Simon Fraser University);
✾❁✿ ✿❃❃ ❃ (Duke University);✾ ✾✾✾❃✾ ✾-
✾ (CISPA Helmholtz Center for Information Security,
Saarbrücken); ✾ ✾✾ ✾✾ (Max Planck Institute
for Informatics, SIC, Saarbrücken)…

…
✾❁✿✾ ✿ ❁❁✿❃❁ ✿ ❃✾ ❁❁✾❃ ✿❁❃✿✾-
✾❃❁❁
❁✾ ✿ ✾ (Alibaba Group); ✾✿ ✾❁ ✾ (Microsoft
Research); ✾ ✾❃✾ ❁ (Washington University in
St. Louis); ❃ ✾ (Columbia University); ❃❁ ✾❁✾
(University of Chicago)
❃ ✾ ❁✾ ✾✾❃ ✾❁ ❃✾✾❁ ❁❁✾❁✿✾-
❃❃ ✿❃✾❁❁❁❃❃✾❃❃ ✿❃✾❁❁❁ ❃
✿❁✿ ✿✾❃ (Stony Brook University); ❁✿❃❃ ❁-
✾✾✿❃❃ (Max Planck Institute for Informatics,
Saarbruecken)
✾❃✾✾ ✾✾ ❃✾✾❁❁✿❃❁ ❃✾ ✿ ❃❁❁ ✿✾-
✾ ✾✾✾ ❃ ✾❃❃❁ ❃ ✿✾❁✾❁ ✿ ✾✾✾✿ ❃ -
❃✿ ✾✾ ✾❃❃✾ ❃✿❃ ❁✾❃
❁❃ ✾❁❃✿❁❃❃ (Univ. Bordeaux, CNRS,
Bordeaux INP, LaBRI, France); ✾❃ ❁❁❁✾ ❃ ❃-
(University of Warsaw, Poland); ❃❁✾ ✾ ✾✾-
(Saarland University and Max Planck Institute for
Informatics, SaarbrÃ¼cken, Germany); ❃ ❃ ✾✾-
✾✾❃ ✾ ✾ (University of Warsaw, Poland)
❃❁❃❃ ❃✾✾❁ ✿❁❁ ✾✾ ❃❃ ❃❃ ✾✿ ❃✿-
❃❃ ❁ ✿ ✿✿❃✾ ❁ ✿ ❁✿
✿❃✿❃✾ ✾ ✾ (ETH ZÃ¼rich); ✿❃ ❃✾ ✾✾-
❃❃ ✿ ❃✿❃ ❃ (TU Berlin)
❁ ✾ ✾ ❃ ✾ ❃❃✿✾✾ ✾
✿❃✿✿✾✾ ❁❁✿✾❁❁❃ ✿❃❃✾ ✾❃❃✾✿❃
(Carnegie Mellon University)…

Philip Wellnitz
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An Example
…

❃✾ ✾ ❁ ✾✾❁✿ ❃❁❃✾✾✾❁ ✿❁ ❃✾✾❁ ❁-
✾ ✿❁❁✾ ✾❃✿ ❃❃✾ ✾❁✾ ✿ ✾✿✾
✿❃✿ ✾ ✿❃ (TU Kaiserslautern).
❁❃❃✿ ✿ ❃✾❁✾✾✾✾✿✾ ❃✿✾✿❃❃ ✾ ❃✾-
✾❁❁✿❃❁ ✾
❃❃✿❃✿ ❃✿ (Simons Institute andUC Berkeley),
❃ ❃❃❃ ❁❁❃ (University of Salzburg),✾❃❃❃✿-
❃ ❃ (University of Salzburg).
❁ ✾ ✿✾❃✾ ❃✾❃❃❁✾❃❁ ✾✾ ❃❃ ✾ ✾✾
✾✾✾ (University of Pennsylvania),
❃❃ ❃ ✿ ❃ ❃ (University of Pennsylvania),
✾❃ ✾ (University of Pennsylvania).
❁❃❃ ✾❃ ✿❃✾ ✾✾ ✿ ✿✿❃❃ ✾ ✾
✾❃ ❃✾❁❃✾ ❃❃✾❃✿✾❁✾❁✾✾❁❃
(Reichman University, Herzliya, Israel and Birkbeck,
University of London), ❁✿❃❃ ❁✾✾✿❃❃ (UC
Berkeley and Max Planck Institute for Informatics,
SIC, Saarbrücken, Germany), ✾ ✾✾ ✾✾ (Max
Planck Institute for Informatics, SIC, Saarbrücken,
Germany).
✾✾ ❃✿ ❃❃❁❁✾ ❃ ✾✾❁✾❃✿❃❃ ✿✾❃-
❃✾✿✾❃✾✾
❃ ✾✾ ❃ ❃❃ (National Institute of Informatics).
❃ ❁❃✾ ✾ ❁ ✾ ❁✿❃❁❁❃ ✿❁✿❃✾❁✿❃❃
✾✾✾✾❃✾✿ ✾ ❃✾✾✾ (UniversitÃ© Paris CitÃ©,
CNRS, IRIF, F-75013, Paris, France);✾✾✾✾ ✿ ✾ ❃-
❃✾ (Universitat PolitÃ¨cnica de Catalunya)…

…
✿ ✿❃✾✿❃✾✿❁✾❃✿✿✾❁✿✾❁❃❁❃✿-
❁✾ ✾ ❃✾✾✾✾❃❁ ❃ ✿❃✾ ✿✿ ❃ ✿❁✿ ❃❁
✾✾❃✾ ✾ ❃ ✾ (ETH Zurich); ❃✾ ❃✾ ❁✾❃❃-
❃ ✾❃ (Toyota Technological Institute at Chicago)
✾❁✾ ✾❃✿❃✾✾ ✿✾✾ ✿❃✾✾❃✾ ❃❃❃❃❁-
✾ ✾✿❁ ❁❁ ✾❁✾ ❃
✿❃✾❁ (Merton College, University of Oxford,
United Kingdom); ❃❁ ❃ ❃❃✾ ✿ (Mathematical
Institute, University of Bonn, Germany); ✾ ✾✾ ✾-
✾ (Max Planck Institute for Informatics, Saarland
Informatics Campus (SIC), Saarbr|cken, Germany)
✾❃✾ ✿✿❃❃ ✾ ✿❃ ❁ ✾❃✿❃✾✿ ✾ ❃✾❃-
✿✾✾ ❃ ✿❁✾✿❃✾✾
✾❃ ❃✾❁✾✿ ✾ (The Academic College of Tel
Aviv-Yafo), ❁✿❃❃ ❁✾✾✿❃❃ (UC Berkeley), ❁ -
❃✾ ✾❃✿ (Weizmann Institute of Science), ❃-
❃❃❃ ❃ (University of California San Diego).
✾ ✾❁✿✾✾ ❁✾❁✾ ✿❃❁❁✾❁✾ ✾✾ ❃✾-
✿✿❁✿ ❃ ✾❃ ❃ ❁✾ ✿ ✿✾ ✿ ✾❃✾ ❃
❃❃✾❁❁❁✾ ✾✿ ✾ ✾✿❃❁✾❃ ✿❁❁ ✿✾ -
✾ (CISPA Helmholtz Center for Information Security,
Saarbrücken);✿❃ ✾ ✾ (Simon Fraser University);
✾❁✿ ✿❃❃ ❃ (Duke University);✾ ✾✾✾❃✾ ✾-
✾ (CISPA Helmholtz Center for Information Security,
Saarbrücken); ✾ ✾✾ ✾✾ (Max Planck Institute
for Informatics, SIC, Saarbrücken)…

…
✾❁✿✾ ✿ ❁❁✿❃❁ ✿ ❃✾ ❁❁✾❃ ✿❁❃✿✾-
✾❃❁❁
❁✾ ✿ ✾ (Alibaba Group); ✾✿ ✾❁ ✾ (Microsoft
Research); ✾ ✾❃✾ ❁ (Washington University in
St. Louis); ❃ ✾ (Columbia University); ❃❁ ✾❁✾
(University of Chicago)
❃ ✾ ❁✾ ✾✾❃ ✾❁ ❃✾✾❁ ❁❁✾❁✿✾-
❃❃ ✿❃✾❁❁❁❃❃✾❃❃ ✿❃✾❁❁❁ ❃
✿❁✿ ✿✾❃ (Stony Brook University); ❁✿❃❃ ❁-
✾✾✿❃❃ (Max Planck Institute for Informatics,
Saarbruecken)
✾❃✾✾ ✾✾ ❃✾✾❁❁✿❃❁ ❃✾ ✿ ❃❁❁ ✿✾-
✾ ✾✾✾ ❃ ✾❃❃❁ ❃ ✿✾❁✾❁ ✿ ✾✾✾✿ ❃ -
❃✿ ✾✾ ✾❃❃✾ ❃✿❃ ❁✾❃
❁❃ ✾❁❃✿❁❃❃ (Univ. Bordeaux, CNRS,
Bordeaux INP, LaBRI, France); ✾❃ ❁❁❁✾ ❃ ❃-
(University of Warsaw, Poland); ❃❁✾ ✾ ✾✾-
(Saarland University and Max Planck Institute for
Informatics, SaarbrÃ¼cken, Germany); ❃ ❃ ✾✾-
✾✾❃ ✾ ✾ (University of Warsaw, Poland)
❃❁❃❃ ❃✾✾❁ ✿❁❁ ✾✾ ❃❃ ❃❃ ✾✿ ❃✿-
❃❃ ❁ ✿ ✿✿❃✾ ❁ ✿ ❁✿
✿❃✿❃✾ ✾ ✾ (ETH ZÃ¼rich); ✿❃ ❃✾ ✾✾-
❃❃ ✿ ❃✿❃ ❃ (TU Berlin)
❁ ✾ ✾ ❃ ✾ ❃❃✿✾✾ ✾
✿❃✿✿✾✾ ❁❁✿✾❁❁❃ ✿❃❃✾ ✾❃❃✾✿❃
(Carnegie Mellon University)…
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An Example

Task: Find Saarbrücken in a text.
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An Example

Task: Find Saarbrücken in a text.

Or Saarbruecken.
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An Example

Task: Find Saarbrücken in a text.

Or Saarbruecken. Or Sarrebruck.
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An Example

Task: Find Saarbrücken in a text.

Or Saarbruecken. Or Sarrebruck. Or Saarbrucken, Saarbr|cken, SaarbrÃ¼cken, ….
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The Approximate String Matching Problem

Approximate String Matching early 1980’s

Given a text 𝑇, a pattern string 𝑃, and an integer 𝑘, identify the (starting positions of)
substrings of 𝑇 that are at edit distance of at most 𝑘 to 𝑃.
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The Approximate String Matching Problem

Approximate String Matching early 1980’s

Given a text 𝑇, a pattern string 𝑃, and an integer 𝑘, identify the (starting positions of)
substrings of 𝑇 that are at edit distance of at most 𝑘 to 𝑃.

Edit distance: minimum number of insertions, deletions, or substitutions of single
characters to transform one string into another string

s a a r b r u e c k e n

s a a r b r ü c k e n

s a r r e b r u c k

s a a r b r ü c k e n
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State-of-the-Art Algorithms
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Outline

Intro
Some Background and Basic Definitions
(Some) Classical Algorithms for Approximate String Matching

Structural Insights into the Solution Structure
The Marking Trick and How to Handle Easy Patterns
Dynamic Puzzle Matching and How to Handle Not So Easy Patterns

On Puzzles and Seaweeds
Some Technical Definitions
Detour: On the Name of Seaweeds
Alignment Graphs and Permutation Matrices of Strings
Solving Dynamic Puzzle Matching via the Seaweed Method

Outlook: Pattern Matching with Weighted Edits and Open Problems
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From Edit Distance to Approximate String Matching

Approximate String Matching
For a text 𝑇, a pattern 𝑃, and an integer 𝑘,

Identify the (starting positions of) substrings of 𝑇 that are at edit distance of at most 𝑘 to 𝑃.

Naive idea: Compute edit distance to pattern starting from any position in the text
 Need to compute edit distance between strings
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From Edit Distance to Approximate String Matching

Approximate String Matching
For a text 𝑇, a pattern 𝑃, and an integer 𝑘,

Identify the (starting positions of) substrings of 𝑇 that are at edit distance of at most 𝑘 to 𝑃.

Naive idea: Compute edit distance to pattern starting from any position in the text
 Need to compute edit distance between strings
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From Edit Distance to Approximate String Matching

Edit Distance (ed)
For two strings 𝑇 and 𝑃, compute their edit distance

(minimum number of insertions, deletions, and substitutions to transform 𝑇 into 𝑃).

Textbook dynamic programming algorithm from around 1970, runs in time 𝑂(𝑡𝑝)
(writing 𝑡 = |𝑇|, 𝑝 = |𝑃|)

Philip Wellnitz
From Strings to Seaweeds: Modern Tools for Classical Problems



7-4

From Edit Distance to Approximate String Matching

Edit Distance (ed)
For two strings 𝑇 and 𝑃, compute their edit distance

(minimum number of insertions, deletions, and substitutions to transform 𝑇 into 𝑃).

Textbook dynamic programming algorithm from around 1970, runs in time 𝑂(𝑡𝑝)
(writing 𝑡 = |𝑇|, 𝑝 = |𝑃|)
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From Edit Distance to Approximate String Matching

Edit Distance (ed)
For two strings 𝑇 and 𝑃, compute their edit distance

(minimum number of insertions, deletions, and substitutions to transform 𝑇 into 𝑃).

Textbook dynamic programming algorithm from around 1970, runs in time 𝑂(𝑡𝑝)
(writing 𝑡 = |𝑇|, 𝑝 = |𝑃|)
Write 𝑒(𝑖, 𝑗) for the ed of 𝑇[ 0 . . 𝑖 ) and
𝑃[ 0 . . 𝑗 )
 𝑒(𝑡, 𝑝) is the ed of 𝑇 and 𝑃.

Clearly, 𝑒(𝑖, 0) = 𝑖 (delete 𝑇[ 0 . . 𝑖 ))
and 𝑒(0, 𝑗) = 𝑗 (insert 𝑃[ 0 . . 𝑗 ))
Observe

𝑒(𝑖, 𝑗) = min{

𝑒(𝑖 − 1, 𝑗) + 1 (delete from 𝑇)
𝑒(𝑖, 𝑗 − 1) + 1 (insert in 𝑇)
𝑒(𝑖 − 1, 𝑗 − 1)
+(𝑇[ 𝑖 ]≠𝑃[ 𝑗 ]) (match/subst)

s a r r e b r ⋯

s
a
a
r
b
⋮

𝑒(𝑖, 𝑗)

𝑒(𝑡, 𝑝)
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From Edit Distance to Approximate String Matching

Edit Distance (ed)
For two strings 𝑇 and 𝑃, compute their edit distance

(minimum number of insertions, deletions, and substitutions to transform 𝑇 into 𝑃).

Textbook dynamic programming algorithm from around 1970, runs in time 𝑂(𝑡𝑝)
(writing 𝑡 = |𝑇|, 𝑝 = |𝑃|)
Write 𝑒(𝑖, 𝑗) for the ed of 𝑇[ 0 . . 𝑖 ) and
𝑃[ 0 . . 𝑗 )
 𝑒(𝑡, 𝑝) is the ed of 𝑇 and 𝑃.

Clearly, 𝑒(𝑖, 0) = 𝑖 (delete 𝑇[ 0 . . 𝑖 ))
and 𝑒(0, 𝑗) = 𝑗 (insert 𝑃[ 0 . . 𝑗 ))
Observe

𝑒(𝑖, 𝑗) = min{

𝑒(𝑖 − 1, 𝑗) + 1 (delete from 𝑇)
𝑒(𝑖, 𝑗 − 1) + 1 (insert in 𝑇)
𝑒(𝑖 − 1, 𝑗 − 1)
+(𝑇[ 𝑖 ]≠𝑃[ 𝑗 ]) (match/subst)

s a r r e b r ⋯
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From Edit Distance to Approximate String Matching

Edit Distance (ed)
For two strings 𝑇 and 𝑃, compute their edit distance

(minimum number of insertions, deletions, and substitutions to transform 𝑇 into 𝑃).

Textbook dynamic programming algorithm from around 1970, runs in time 𝑂(𝑡𝑝)
(writing 𝑡 = |𝑇|, 𝑝 = |𝑃|)
Write 𝑒(𝑖, 𝑗) for the ed of 𝑇[ 0 . . 𝑖 ) and
𝑃[ 0 . . 𝑗 )
 𝑒(𝑡, 𝑝) is the ed of 𝑇 and 𝑃.

Clearly, 𝑒(𝑖, 0) = 𝑖 (delete 𝑇[ 0 . . 𝑖 ))
and 𝑒(0, 𝑗) = 𝑗 (insert 𝑃[ 0 . . 𝑗 ))
Observe

𝑒(𝑖, 𝑗) = min{

𝑒(𝑖 − 1, 𝑗) + 1 (delete from 𝑇)
𝑒(𝑖, 𝑗 − 1) + 1 (insert in 𝑇)
𝑒(𝑖 − 1, 𝑗 − 1)
+(𝑇[ 𝑖 ]≠𝑃[ 𝑗 ]) (match/subst)
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From Edit Distance to Approximate String Matching

Edit Distance (ed)
For two strings 𝑇 and 𝑃, compute their edit distance

(minimum number of insertions, deletions, and substitutions to transform 𝑇 into 𝑃).

Textbook dynamic programming algorithm from around 1970, runs in time 𝑂(𝑡𝑝)
(writing 𝑡 = |𝑇|, 𝑝 = |𝑃|)
Write 𝑒(𝑖, 𝑗) for the ed of 𝑇[ 0 . . 𝑖 ) and
𝑃[ 0 . . 𝑗 )
 𝑒(𝑡, 𝑝) is the ed of 𝑇 and 𝑃.

Clearly, 𝑒(𝑖, 0) = 𝑖 (delete 𝑇[ 0 . . 𝑖 ))
and 𝑒(0, 𝑗) = 𝑗 (insert 𝑃[ 0 . . 𝑗 ))
Observe

𝑒(𝑖, 𝑗) = min{

𝑒(𝑖 − 1, 𝑗) + 1 (delete from 𝑇)
𝑒(𝑖, 𝑗 − 1) + 1 (insert in 𝑇)
𝑒(𝑖 − 1, 𝑗 − 1)
+(𝑇[ 𝑖 ]≠𝑃[ 𝑗 ]) (match/subst)

s a r r e b r ⋯
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From Edit Distance to Approximate String Matching

Edit Distance (ed)
For two strings 𝑇 and 𝑃, compute their edit distance

(minimum number of insertions, deletions, and substitutions to transform 𝑇 into 𝑃).

Textbook dynamic programming algorithm from around 1970, runs in time 𝑂(𝑡𝑝)
(writing 𝑡 = |𝑇|, 𝑝 = |𝑃|)
Write 𝑒(𝑖, 𝑗) for the ed of 𝑇[ 0 . . 𝑖 ) and
𝑃[ 0 . . 𝑗 )
 𝑒(𝑡, 𝑝) is the ed of 𝑇 and 𝑃.

Clearly, 𝑒(𝑖, 0) = 𝑖 (delete 𝑇[ 0 . . 𝑖 ))
and 𝑒(0, 𝑗) = 𝑗 (insert 𝑃[ 0 . . 𝑗 ))
Observe

𝑒(𝑖, 𝑗) = min{

𝑒(𝑖 − 1, 𝑗) + 1 (delete from 𝑇)
𝑒(𝑖, 𝑗 − 1) + 1 (insert in 𝑇)
𝑒(𝑖 − 1, 𝑗 − 1)
+(𝑇[ 𝑖 ]≠𝑃[ 𝑗 ]) (match/subst)
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From Edit Distance to Approximate String Matching

Edit Distance (ed)
For two strings 𝑇 and 𝑃, compute their edit distance

(minimum number of insertions, deletions, and substitutions to transform 𝑇 into 𝑃).

Textbook dynamic programming algorithm from around 1970, runs in time 𝑂(𝑡𝑝)
(writing 𝑡 = |𝑇|, 𝑝 = |𝑃|)
Write 𝑒(𝑖, 𝑗) for the ed of 𝑇[ 0 . . 𝑖 ) and
𝑃[ 0 . . 𝑗 )
 𝑒(𝑡, 𝑝) is the ed of 𝑇 and 𝑃.

Clearly, 𝑒(𝑖, 0) = 𝑖 (delete 𝑇[ 0 . . 𝑖 ))
and 𝑒(0, 𝑗) = 𝑗 (insert 𝑃[ 0 . . 𝑗 ))
Observe

𝑒(𝑖, 𝑗) = min{

𝑒(𝑖 − 1, 𝑗) + 1 (delete from 𝑇)
𝑒(𝑖, 𝑗 − 1) + 1 (insert in 𝑇)
𝑒(𝑖 − 1, 𝑗 − 1)
+(𝑇[ 𝑖 ]≠𝑃[ 𝑗 ]) (match/subst)

s a r r e b r ⋯
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a
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From Edit Distance to Approximate String Matching

Approximate String Matching
For a text 𝑇, a pattern 𝑃, and an integer 𝑘,

Identify the (starting positions of) substrings of 𝑇 that are at edit distance of at most 𝑘 to 𝑃.

Textbook dynamic programming algorithm from ≈1970 1980, runs in time 𝑂(𝑡𝑝)
(writing 𝑡 = |𝑇|, 𝑝 = |𝑃|), [Sellers 1980, rediscovered several times]
Write 𝑒(𝑖, 𝑗) for the ed of 𝑇[ 0 . . 𝑖 ) and
𝑃[ 0 . . 𝑗 )
after deleting an arbitrary prefix of 𝑇

Clearly, 𝑒(𝑖, 0) = 0 (delete 𝑇[ 0 . . 𝑖 ))
and 𝑒(0, 𝑗) = 𝑗 (insert 𝑃[ 0 . . 𝑗 ))
Observe

𝑒(𝑖, 𝑗) = min{

𝑒(𝑖 − 1, 𝑗) + 1 (delete from 𝑇)
𝑒(𝑖, 𝑗 − 1) + 1 (insert in 𝑇)
𝑒(𝑖 − 1, 𝑗 − 1)
+(𝑇[ 𝑖 ]≠𝑃[ 𝑗 ]) (match/subst)

s a r r e b r ⋯
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s
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a
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r
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b
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From Edit Distance to Approximate String Matching

Approximate String Matching
For a text 𝑇, a pattern 𝑃, and an integer 𝑘,

Identify the (starting positions of) substrings of 𝑇 that are at edit distance of at most 𝑘 to 𝑃.

Textbook dynamic programming algorithm from ≈1970 1980, runs in time 𝑂(𝑡𝑝)
(writing 𝑡 = |𝑇|, 𝑝 = |𝑃|), [Sellers 1980, rediscovered several times]
Write 𝑒(𝑖, 𝑗) for the ed of 𝑇[ 0 . . 𝑖 ) and
𝑃[ 0 . . 𝑗 )
after deleting an arbitrary prefix of 𝑇

Clearly, 𝑒(𝑖, 0) = 0 (delete 𝑇[ 0 . . 𝑖 ))
and 𝑒(0, 𝑗) = 𝑗 (insert 𝑃[ 0 . . 𝑗 ))
Observe

𝑒(𝑖, 𝑗) = min{

𝑒(𝑖 − 1, 𝑗) + 1 (delete from 𝑇)
𝑒(𝑖, 𝑗 − 1) + 1 (insert in 𝑇)
𝑒(𝑖 − 1, 𝑗 − 1)
+(𝑇[ 𝑖 ]≠𝑃[ 𝑗 ]) (match/subst)

s a r r e b r ⋯

0 0 0 0 0 0 0 0
s

1 0 1 1 1 1 1 1
a

2 1 0 1 2 2 2 2
a

3 2 1 1 2 3 3 3
r

4 3 2 1 1 2 3 3
b

5 4 3 2 2 2 2 3
⋮
Ending positions of saarb with 𝑘 = 2.

Philip Wellnitz
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From Edit Distance to Approximate String Matching

Approximate String Matching
For a text 𝑇, a pattern 𝑃, and an integer 𝑘,

Identify the (starting positions of) substrings of 𝑇 that are at edit distance of at most 𝑘 to 𝑃.

Textbook dynamic programming algorithm from ≈1970 1980, runs in time 𝑂(𝑡𝑝)
(writing 𝑡 = |𝑇|, 𝑝 = |𝑃|), [Sellers 1980, rediscovered several times]
Write 𝑒(𝑖, 𝑗) for the ed of 𝑇𝑅[ 0 . . 𝑖 ) and
𝑃𝑅[ 0 . . 𝑗 )
after deleting an arbitrary prefix of 𝑇𝑅

Clearly, 𝑒(𝑖, 0) = 0 (delete 𝑇[ 0 . . 𝑖 ))
and 𝑒(0, 𝑗) = 𝑗 (insert 𝑃[ 0 . . 𝑗 ))
Observe

𝑒(𝑖, 𝑗) = min{

𝑒(𝑖 − 1, 𝑗) + 1 (delete from 𝑇)
𝑒(𝑖, 𝑗 − 1) + 1 (insert in 𝑇)
𝑒(𝑖 − 1, 𝑗 − 1)
+(𝑇[ 𝑖 ]≠𝑃[ 𝑗 ]) (match/subst)

r b e r r a s ⋯

0 0 0 0 0 0 0 0
b

1 1 0 1 1 1 1 1
r

2 1 1 1 1 1 2 2
a

3 2 2 2 2 2 1 2
a

4 3 3 3 3 3 2 2
s

5 4 4 4 4 4 3 2
⋮
Starting positions of saarb with 𝑘 = 2.

Philip Wellnitz
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Detour: More on (Historic) Applications

Approximate String Matching
For a text 𝑇, a pattern 𝑃, and an integer 𝑘,

Identify the (starting positions of) substrings of 𝑇 that are at edit distance of at most 𝑘 to 𝑃.

(Variations of) Sellers’ 𝑂(𝑡𝑝) Algorithm were (are?) popular for
(Have seen) Text Retrieval: Find occurrences of patterns or phrases in a text,
accounting for misspellings or conversion errors
Signal Processing: Find patterns in signals, accounting for transmission errors
Computational Biology: Find specific patterns in dna sequences, accounting for
mutations or evolutionary alterations

Philip Wellnitz
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Detour: More on (Historic) Applications

Approximate String Matching
For a text 𝑇, a pattern 𝑃, and an integer 𝑘,

Identify the (starting positions of) substrings of 𝑇 that are at edit distance of at most 𝑘 to 𝑃.

(Variations of) Sellers’ 𝑂(𝑡𝑝) Algorithm were (are?) popular for
(Have seen) Text Retrieval: Find occurrences of patterns or phrases in a text,
accounting for misspellings or conversion errors
Signal Processing: Find patterns in signals, accounting for transmission errors
Computational Biology: Find specific patterns in dna sequences, accounting for
mutations or evolutionary alterations
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Beating Sellers’ Algorithm

There must be faster algorithms out there!
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Beating Sellers’ Algorithm

There must be faster algorithms out there!
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Beating Sellers’ Algorithm

There must be faster algorithms out there!
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Using Kangaroo Jumps for Speed-Ups

Approximate String Matching
For a text 𝑇, a pattern 𝑃, and an integer 𝑘,

Identify the (starting positions of) substrings of 𝑇 that are at edit distance of at most 𝑘 to 𝑃.

So far, did not use 𝑘
 Do not need values 𝑒(𝑖, 𝑗) > 𝑘
How do we compute just values ≤ 𝑘?
 Compute values diagonally.

⋯

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
r

1 0 0 1 1 0 1 1 1 0 1 1 1 0 0 1 1
a

2 1 1 0 1 1 0 1 2 1 1 1 2 1 1 0 1
a

3 2 2 1 1 2 1 0 1 2 2 1 2 2 2 1 1
s

4 3 3 2 1 2 2 1 0 1 2 2 1 2 3 2 1
r

5 4 3 3 2 1 2 2 1 0 1 2 2 1 2 3 2
a

6 5 4 3 3 2 1 2 2 1 1 1 2 2 2 2 3
a

7 6 5 4 4 3 2 1 2 2 2 1 2 3 3 2 3
s

8 7 6 5 4 4 3 2 1 2 3 2 1 2 3 3 2

r r a s r a a s r h a s r r a s

Finding saarsaar with 𝑘 ≤ 2 edits.

Philip Wellnitz
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Using Kangaroo Jumps for Speed-Ups

Approximate String Matching
For a text 𝑇, a pattern 𝑃, and an integer 𝑘,

Identify the (starting positions of) substrings of 𝑇 that are at edit distance of at most 𝑘 to 𝑃.

So far, did not use 𝑘
 Do not need values 𝑒(𝑖, 𝑗) > 𝑘
How do we compute just values ≤ 𝑘?
 Compute values diagonally.

⋯

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
r

1 0 0 1 1 0 1 1 1 0 1 1 1 0 0 1 1
a

2 1 1 0 1 1 0 1 2 1 1 1 2 1 1 0 1
a

3 2 2 1 1 2 1 0 1 2 2 1 2 2 2 1 1
s

4 3 3 2 1 2 2 1 0 1 2 2 1 2 3 2 1
r

5 4 3 3 2 1 2 2 1 0 1 2 2 1 2 3 2
a

6 5 4 3 3 2 1 2 2 1 1 1 2 2 2 2 3
a

7 6 5 4 4 3 2 1 2 2 2 1 2 3 3 2 3
s

8 7 6 5 4 4 3 2 1 2 3 2 1 2 3 3 2

r r a s r a a s r h a s r r a s

Finding saarsaar with 𝑘 ≤ 2 edits.
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Using Kangaroo Jumps for Speed-Ups

Approximate String Matching
For a text 𝑇, a pattern 𝑃, and an integer 𝑘,

Identify the (starting positions of) substrings of 𝑇 that are at edit distance of at most 𝑘 to 𝑃.

So far, did not use 𝑘
 Do not need values 𝑒(𝑖, 𝑗) > 𝑘
How do we compute just values ≤ 𝑘?
 Compute values diagonally.

⋯

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
r

1 0 0 1 1 0 1 1 1 0 1 1 1 0 0 1 1
a

2 1 1 0 1 1 0 1 2 1 1 1 2 1 1 0 1
a

3 2 2 1 1 2 1 0 1 2 2 1 2 2 2 1 1
s

4 3 3 2 1 2 2 1 0 1 2 2 1 2 3 2 1
r

5 4 3 3 2 1 2 2 1 0 1 2 2 1 2 3 2
a

6 5 4 3 3 2 1 2 2 1 1 1 2 2 2 2 3
a

7 6 5 4 4 3 2 1 2 2 2 1 2 3 3 2 3
s

8 7 6 5 4 4 3 2 1 2 3 2 1 2 3 3 2

r r a s r a a s r h a s r r a s

Finding saarsaar with 𝑘 ≤ 2 edits.
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Using Kangaroo Jumps for Speed-Ups

Approximate String Matching
For a text 𝑇, a pattern 𝑃, and an integer 𝑘,

Identify the (starting positions of) substrings of 𝑇 that are at edit distance of at most 𝑘 to 𝑃.

So far, did not use 𝑘
 Do not need values 𝑒(𝑖, 𝑗) > 𝑘
How do we compute just values ≤ 𝑘?
 Compute values diagonally.

⋯

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
r

1 0 0 1 1 0 1 1 1 0 1 1 1 0 0 1 1
a

2 1 1 0 1 1 0 1 2 1 1 1 2 1 1 0 1
a

3 2 2 1 1 2 1 0 1 2 2 1 2 2 2 1 1
s

4 3 3 2 1 2 2 1 0 1 2 2 1 2 3 2 1
r

5 4 3 3 2 1 2 2 1 0 1 2 2 1 2 3 2
a

6 5 4 3 3 2 1 2 2 1 1 1 2 2 2 2 3
a

7 6 5 4 4 3 2 1 2 2 2 1 2 3 3 2 3
s

8 7 6 5 4 4 3 2 1 2 3 2 1 2 3 3 2

r r a s r a a s r h a s r r a s

Finding saarsaar with 𝑘 ≤ 2 edits.

Philip Wellnitz
From Strings to Seaweeds: Modern Tools for Classical Problems
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Using Kangaroo Jumps for Speed-Ups

Approximate String Matching
For a text 𝑇, a pattern 𝑃, and an integer 𝑘,

Identify the (starting positions of) substrings of 𝑇 that are at edit distance of at most 𝑘 to 𝑃.

So far, did not use 𝑘
 Do not need values 𝑒(𝑖, 𝑗) > 𝑘
How do we compute just values ≤ 𝑘?
 Compute furthest position on diag 𝑑
reachable with ℓ = 0, … , 𝑘 edits.
 Jump over equal substrings in 𝑂(1)
time (Kangaroo Jumps).
 In total: 𝑂((𝑡 + 𝑝)𝑘) time time
[Landau, Vishkin’89].

⋯

0
1 0

1

1 1

0
1

1 1 1 0
1

1 1 1 0
1 0

1

1 1

000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
r
a
a
s
r
a
a
s

r r a s r a a s r h a s r r a s

1

Finding saarsaar with 𝑘 ≤ 0 edits.

Philip Wellnitz
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Using Kangaroo Jumps for Speed-Ups

Approximate String Matching
For a text 𝑇, a pattern 𝑃, and an integer 𝑘,

Identify the (starting positions of) substrings of 𝑇 that are at edit distance of at most 𝑘 to 𝑃.

So far, did not use 𝑘
 Do not need values 𝑒(𝑖, 𝑗) > 𝑘
How do we compute just values ≤ 𝑘?
 Compute furthest position on diag 𝑑
reachable with ℓ = 0, … , 𝑘 edits.
 Jump over equal substrings in 𝑂(1)
time (Kangaroo Jumps).
 In total: 𝑂((𝑡 + 𝑝)𝑘) time time
[Landau, Vishkin’89].

⋯

0
1 0

1

1 1

0
1

1 1 1 0
1

1 1 1 0
1 0

1

1 11

11
2

11

1 11
2

11
2

11
2

11

11
2

1

11
2 11

2

11
2

11
2

11 11
2 11

2

11
1 11

11
11

000 0
11

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
r
a
a
s
r
a
a
s

r r a s r a a s r h a s r r a s

Finding saarsaar with 𝑘 ≤ 1 edits.
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Using Kangaroo Jumps for Speed-Ups

Approximate String Matching
For a text 𝑇, a pattern 𝑃, and an integer 𝑘,

Identify the (starting positions of) substrings of 𝑇 that are at edit distance of at most 𝑘 to 𝑃.

So far, did not use 𝑘
 Do not need values 𝑒(𝑖, 𝑗) > 𝑘
How do we compute just values ≤ 𝑘?
 Compute furthest position on diag 𝑑
reachable with ℓ = 0, … , 𝑘 edits.
 Jump over equal substrings in 𝑂(1)
time (Kangaroo Jumps).
 In total: 𝑂((𝑡 + 𝑝)𝑘) time time
[Landau, Vishkin’89].

⋯

0
1 0

1

1 1

0
1

1 1 1 0
1

1 1 1 0
1 0

1

1 11

11
2

11

1 11
2

11
2

11
2

11

11
2

1

11
2 11

2

11
2

11
2

11 11
2 11

2

11
1 11

11
11

22
3

22 22
22

3 22 22

22
3

22
3

22

22
3

2

22
3

22

000 0
11

0

22

0 0 0 0 0 0 0 0 0 0 0 0 0 0
r
a
a
s
r
a
a
s

r r a s r a a s r h a s r r a s

Finding saarsaar with 𝑘 ≤ 2 edits.
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Using Kangaroo Jumps for Speed-Ups

Approximate String Matching
For a text 𝑇, a pattern 𝑃, and an integer 𝑘,

Identify the (starting positions of) substrings of 𝑇 that are at edit distance of at most 𝑘 to 𝑃.

So far, did not use 𝑘
 Do not need values 𝑒(𝑖, 𝑗) > 𝑘
How do we compute just values ≤ 𝑘?
 Compute furthest position on diag 𝑑
reachable with ℓ = 0, … , 𝑘 edits.
 Jump over equal substrings in 𝑂(1)
time (Kangaroo Jumps).
 In total: 𝑂((𝑡 + 𝑝)𝑘) time time
[Landau, Vishkin’89].

⋯

0
1 0

1

1 1

0
1

1 1 1 0
1

1 1 1 0
1 0

1

1 11

11
2

11

1 11
2

11
2

11
2

11

11
2

1

11
2 11

2

11
2

11
2

11 11
2 11

2

11
1 11

11
11

22
3

22 22
22

3 22 22

22
3

22
3

22

22
3

2

22
3

22

000 0
11

0

22

0 0 0 0 0 0 0 0 0 0 0 0 0 0
r
a
a
s
r
a
a
s

r r a s r a a s r h a s r r a s

Finding saarsaar with 𝑘 ≤ 2 edits.
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Using Kangaroo Jumps for Speed-Ups

Approximate String Matching
For a text 𝑇, a pattern 𝑃, and an integer 𝑘,

Identify the (starting positions of) substrings of 𝑇 that are at edit distance of at most 𝑘 to 𝑃.

So far, did not use 𝑘
 Do not need values 𝑒(𝑖, 𝑗) > 𝑘
How do we compute just values ≤ 𝑘?
 Compute furthest position on diag 𝑑
reachable with ℓ = 0, … , 𝑘 edits.
 Jump over equal substrings in 𝑂(1)
time (Kangaroo Jumps). ← complicated
 In total: 𝑂((𝑡 + 𝑝)𝑘) time time
[Landau, Vishkin’89].

⋯

0
1 0

1

1 1

0
1

1 1 1 0
1

1 1 1 0
1 0

1

1 11

11
2

11

1 11
2

11
2

11
2

11

11
2

1

11
2 11

2

11
2

11
2

11 11
2 11

2

11
1 11

11
11

22
3

22 22
22

3 22 22

22
3

22
3

22

22
3

2

22
3

22

000 0
11

0

22

0 0 0 0 0 0 0 0 0 0 0 0 0 0
r
a
a
s
r
a
a
s

r r a s r a a s r h a s r r a s

Finding saarsaar with 𝑘 ≤ 2 edits.
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Beating Landau and Vishkin’s Algorithm

There must be faster algorithms out there!
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Beating Landau and Vishkin’s Algorithm

There must be faster algorithms out there!

⋯
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Beating Landau and Vishkin’s Algorithm

Idea: Can we filter out diagonals that will never lead to an occurrence?

Philip Wellnitz
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Beating Landau and Vishkin’s Algorithm

Idea: Can we filter out diagonals that will never lead to an occurrence?

⋯

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0
0
0
0
0
0
01

112

000 0
11

0

22

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
a
a
a
a
a
a
a
a

a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a
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Beating Landau and Vishkin’s Algorithm

Idea: Can we filter out diagonals that will never lead to an occurrence?
Sometimes we can; and if we cannot, there might be structure to exploit!

⋯

1 1 1 0
1

1

0
1

1 1 1 0
1 0

1

1 1 1 1 1 1

0
1

1 1 1 0
1

1 1 1 0
1 0

1

1 1 1 1 1 1 11 11
2

11
2 11

2

11
2

11
2

11

11
2

1

11
2 11

2

11
2

1 11
2

11
2

11
2

11
2

11
2

11
2

11
2

11

11
2

1

11
2 11

2

11
2

11
2

11 11
2 11

2

11
2

1 11
2

11
2

11
2

11
2

11
2

11
2

11
2

11
22

3

22
3 22

3

22
3

22
3 22 22

22
3

22
3

22
3

22
3

22
3

22
3

22
3

22
3

22
3 22 22

22
3

22
3

22

22
3

2

22
3

22
3

22
3

22
3

22
3

22
3

22
3

22
3

22
3

22

000 0
11

0

22

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
r
a
a
s
r
a
a
s

k c u r b r a a s r r a s i u o l r a a s r h a s r r a s n e k c e
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Beating Landau and Vishkin’s Algorithm

Idea: Can we filter out diagonals that will never lead to an occurrence?
Sometimes we can; and if we cannot, there might be structure to exploit!

⋯

0
1

0
1

0
1

11
2

11

11
2

1

1
2

11

11
2

1

1
2

11
2

1
2

1

22
3 22 22

22
3 22

3 22 22

22
3

22
3

22

22
3

2

0 0 0
r
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a
s
r
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a
s
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Unstructured Parts of the Pattern Help!

Approximate String Matching
For a text 𝑇, a pattern 𝑃, and an integer 𝑘,

Identify the (starting positions of) substrings of 𝑇 that are at edit distance of at most 𝑘 to 𝑃.

Idea: Find parts of 𝑃 that are rare in 𝑇
 Can filter out candidates for occurrences

Seen: Highly repetitive parts 𝑅 are bad…
 𝑅 may appear ≈ 𝑡 times in 𝑇

Non-repetitive parts 𝐵 are good!
 𝐵 may appear only ≈ 𝑡/𝑏 times in 𝑇
 Problem: 𝐵 may appear approximately in 𝑇

Philip Wellnitz
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Unstructured Parts of the Pattern Help!

Approximate String Matching
For a text 𝑇, a pattern 𝑃, and an integer 𝑘,

Identify the (starting positions of) substrings of 𝑇 that are at edit distance of at most 𝑘 to 𝑃.

Idea: Find parts of 𝑃 that are rare in 𝑇
 Can filter out candidates for occurrences

Seen: Highly repetitive parts 𝑅 are bad…
 𝑅 may appear ≈ 𝑡 times in 𝑇

Non-repetitive parts 𝐵 are good!
 𝐵 may appear only ≈ 𝑡/𝑏 times in 𝑇
 Problem: 𝐵 may appear approximately in 𝑇

⋯

0 0 0 0 0 0 0
0
0
0
0
01

11

000 0
11

0 0 0 0 0 0 0 0 0 0 0
a
a
a
a
a
a

a a a a a a a a a a a a
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Unstructured Parts of the Pattern Help!

Approximate String Matching
For a text 𝑇, a pattern 𝑃, and an integer 𝑘,

Identify the (starting positions of) substrings of 𝑇 that are at edit distance of at most 𝑘 to 𝑃.

Idea: Find parts of 𝑃 that are rare in 𝑇
 Can filter out candidates for occurrences

Seen: Highly repetitive parts 𝑅 are bad…
 𝑅 may appear ≈ 𝑡 times in 𝑇

Non-repetitive parts 𝐵 are good!
 𝐵 may appear only ≈ 𝑡/𝑏 times in 𝑇
 Problem: 𝐵 may appear approximately in 𝑇

⋯

0

1 1 1 1 1

0

1 1 1 1 11

11 11

11
2

11
2

11
2

11
11

11
2

11
2

11
2

11
000 0
11

0 0 0 0 0 0 0 0 0 0 0
a
b
c
d
e
f

a b c d e f a b c d e f
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Unstructured Parts of the Pattern Help!

Approximate String Matching
For a text 𝑇, a pattern 𝑃, and an integer 𝑘,

Identify the (starting positions of) substrings of 𝑇 that are at edit distance of at most 𝑘 to 𝑃.

Idea: Find parts of 𝑃 that are rare in 𝑇
 Can filter out candidates for occurrences

Seen: Highly repetitive parts 𝑅 are bad…
 𝑅 may appear ≈ 𝑡 times in 𝑇

Non-repetitive parts 𝐵 are good!
 𝐵 may appear only ≈ 𝑡/𝑏 times in 𝑇
 Problem: 𝐵 may appear approximately in 𝑇

⋯

0
1

1 1 1 1 0
1

0
1

1 1 1 1 01

11 11
11

2

11
2

11
2 11

2

11 11
11

11
2

11
2 11

000 0
11

0 0 0 0 0 0 0 0 0 0 0
a
b
c
d
e
f

a b c d e a a b c d e a
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Unstructured Parts of the Pattern Help!

Approximate String Matching
For a text 𝑇, a pattern 𝑃, and an integer 𝑘,

Identify the (starting positions of) substrings of 𝑇 that are at edit distance of at most 𝑘 to 𝑃.

Idea: Find non-repetitive parts (breaks) 𝐵 in the pattern 𝐵 appears rarely in text
 Problem: In an occurrence, 𝐵 might have an error
Observation: Out of 2𝑘 disjoint breaks in 𝑃, any occ matches 𝑘 breaks exactly
(Have a budget of only 𝑘 edits in total)

Leads to 𝑂(𝑡 + 𝑘4 ⋅ 𝑡/𝑝) algorithm (more details soon) [Cole,Hariharan’02] (announced ’98)

𝑃

𝑇 ⋯ ⋯
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Recap: State-of-the-Art Algorithms
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Recap: State-of-the-Art Algorithms

Why did a new improvement take 24 years?
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Detour: Why did a new improvement for Approximate String Matching take 24 years?

Simpler problems were not fully understood!
Example 1: The complexity of Edit Distance was settled only in 2014
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Detour: Why did a new improvement for Approximate String Matching take 24 years?

Simpler problems were not fully understood!
Example 1: The complexity of Edit Distance was settled only in 2014

Hardness of Edit Distance [BI18] (ann. 2014)

Computing the Edit Distance of to strings of length 𝑛 is not possible in 𝑂(𝑛2−𝜀) time.
(Unless there is a major breakthrough for the Satisfiability Problem.)
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Detour: Why did a new improvement for Approximate String Matching take 24 years?

Simpler problems were not fully understood!
Example 1: The complexity of Edit Distance was settled only in 2014

Hardness of Edit Distance [BI18] (ann. 2014)

Computing the Edit Distance of to strings of length 𝑛 is not possible in 𝑂(𝑛2−𝜀) time.
(Unless there is a major breakthrough for the Satisfiability Problem.)

 Yields lower bound of 𝑂(𝑡 + 𝑘2 ⋅ 𝑡/𝑝) for Approximate String Matching.

Philip Wellnitz
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Detour: Why did a new improvement for Approximate String Matching take 24 years?

Simpler problems were not fully understood!
Example 2: String Matching with Mismatches (no insertions or deletions of chars)
 𝑂(𝑡𝑘) algorithm [Landau, Vishkin’86]
 �̃�(𝑡√𝑘) algorithm [Amir, Lewenstein, Porat’04]
 �̃�(𝑡 + 𝑡/𝑝 ⋅ 𝑘2) algorithm [CFPSS’16]
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Simpler problems were not fully understood!
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 𝑂(𝑡𝑘) algorithm [Landau, Vishkin’86]
 �̃�(𝑡√𝑘) algorithm [Amir, Lewenstein, Porat’04]
 �̃�(𝑡 + 𝑡/𝑝 ⋅ 𝑘2) algorithm [CFPSS’16]

Optimal String Matching with Mismatches [GU18] (ann. 2017)

There is a �̃�(𝑡 + 𝑘𝑡/√𝑝)-time algorithm for String Matching with Mismatches
and no significantly faster algorithm exits.

(Unless there is a major breakthrough for combinatorial Boolean Matrix Multiplication.)
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 𝑂(𝑡𝑘) algorithm [Landau, Vishkin’86]
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 �̃�(𝑡 + 𝑡/𝑝 ⋅ 𝑘2) algorithm [CFPSS’16]

Optimal String Matching with Mismatches [GU18] (ann. 2017)

There is a �̃�(𝑡 + 𝑘𝑡/√𝑝)-time algorithm for String Matching with Mismatches
and no significantly faster algorithm exits.

(Unless there is a major breakthrough for combinatorial Boolean Matrix Multiplication.)

 String Matching with Mismatches was “fully” understood only in 2017.
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Beating Cole and Hariharan’s Algorithm

How do we obtain faster algorithms?

New insights into the solution structure of
Approximate String Matching
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Beating Cole and Hariharan’s Algorithm

How do we obtain faster algorithms?

New insights into the solution structure of
Approximate String Matching
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Structural Results for Approximate String Matching

Step 0:

What is the solution structure of
Exact String Matching?
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The Solution Structure of Exact String Matching

(The) Period of a String
𝑝 > 0 is a period of a string 𝑆 if 𝑆[ 𝑖 ] = 𝑆[ 𝑖 + 𝑝 ] for all 𝑖 = 1, … , |𝑆| − 𝑝.

The period of 𝑆: smallest period of 𝑆, write per(𝑆).
𝑆 is periodic: per(𝑆) ≤ |𝑆|/2

𝑆 =

per(𝑆) = 3

6 and 9 also periods of 𝑆

a b c a b c a b c a b
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The Solution Structure of Exact String Matching

“Periodicity Lemma” (Folklore)

Text 𝑇, pattern 𝑃 with |𝑇| ≤ 3/2 |𝑃|; one of the following holds
𝑃 appears ≤ 1 times in 𝑇.
𝑃 (and the relevant part of 𝑇) are periodic with some period 𝑄.

𝑇

𝑃
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The Solution Structure of Exact String Matching

“Periodicity Lemma” (Folklore)

Text 𝑇, pattern 𝑃 with |𝑇| ≤ 3/2 |𝑃|; one of the following holds
𝑃 appears ≤ 1 times in 𝑇.
𝑃 (and the relevant part of 𝑇) are periodic with some period 𝑄.

𝑇

𝑃

𝑃

The Standard Trick: For |𝑇| ≫ |𝑃| consider separately 𝑂(𝑛/𝑚) fragments of 𝑇 of length
≤ 3/2𝑚 that overlap by 𝑚 − 1 positions.
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Structural Results for Approximate String Matching

Step 1:

What is the solution structure of
String Matching with Mismatches?

Philip Wellnitz
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Structural Results for Approximate String Matching

Periodicity Lemma (Folklore)

Text 𝑇, pattern 𝑃 with 𝑡 ≤ 3/2𝑝; 𝑃 appears ≤ 1 times in 𝑇 or 𝑃 is periodic with some period 𝑄.

Main Result (Mismatches) [BKüW’19; CKoW’20]

Text 𝑇, pattern 𝑃 with 𝑡 ≤ 3/2𝑝; threshold 𝑘, one of the following holds

𝑃 appears ≤ 𝑂(𝑘) times in 𝑇 or 𝑃 is almost periodic with some period 𝑄

𝑇

𝑃

a a a c c cc c c

a a c cc c

⋯ ⋯ ⋯ ⋯

⋯ ⋯

a⋯ac⋯c appears 2𝑘 times

𝑇

𝑃

a a a a a a

a a a a

c c

c

⋯ ⋯

⋯

aa⋯aca has approximate period a
(is at HD ≤ 2𝑘 from 𝑄∞)
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Structural Results for Approximate String Matching

Step 1.5:

The solution structure of
Approximate String Matching.
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Structural Results for Approximate String Matching

Main Result (Mismatches) [BKüW’19; CKoW’20]

𝑇, 𝑃 with 𝑡 ≤ 3/2𝑝; threshold 𝑘, 𝑃 appears 𝑂(𝑘) times in 𝑇 or 𝑃 is almost periodic with some period 𝑄

Main Result (Edits) [CKoW’20]

Text 𝑇, pattern 𝑃 with 𝑡 ≤ 3/2𝑝; threshold 𝑘, one of the following holds

𝑃 appears ≤ 𝑂(𝑘2) times in 𝑇 or 𝑃 is almost periodic with some period 𝑄
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Text 𝑇, pattern 𝑃 with 𝑡 ≤ 3/2𝑝; threshold 𝑘, one of the following holds

𝑃 appears ≤ 𝑂(𝑘2) times in 𝑇 or 𝑃 is almost periodic with some period 𝑄

𝑇

𝑃

a a a a a a a a a a a a a a ac c c

a a a a a a a a a ac c

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯

⋯ ⋯ ⋯ ⋯ ⋯

aa⋯aaa⋯aca⋯a⋯ca⋯a appears ≈ 𝑘2 times

Philip Wellnitz
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Structural Results for Approximate String Matching

Main Result (Edits) [CKoW’20]

𝑇, 𝑃 with 𝑡 ≤ 3/2𝑝; threshold 𝑘, 𝑃 appears 𝑂(𝑘2) times in 𝑇 or 𝑃 is almost periodic with some period 𝑄

Philip Wellnitz
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Structural Results for Approximate String Matching

Main Result (Edits) [CKoW’20]

𝑇, 𝑃 with 𝑡 ≤ 3/2𝑝; threshold 𝑘, 𝑃 appears 𝑂(𝑘2) times in 𝑇 or 𝑃 is almost periodic with some period 𝑄

Key Intermediate Result (Analyze) [CKoW’20]

Every string 𝑃 satisfies at least one of
𝑃 has 2𝑘 disjoint, long breaks c✾✿❁❁✾❃a✾✿❁❁✾❃a
𝑃 has disjoint repetitive regions that cover 3/8 𝑃 ✾❃aaaaaa✾❃ccaccc✾❃
𝑃 is almost periodic. aaacaaaaaaaaacaaaaaaa

Philip Wellnitz
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Structural Results for Approximate String Matching

Main Result (Edits) [CKoW’20]

𝑇, 𝑃 with 𝑡 ≤ 3/2𝑝; threshold 𝑘, 𝑃 appears 𝑂(𝑘2) times in 𝑇 or 𝑃 is almost periodic with some period 𝑄

Key Intermediate Result (Analyze) [CKoW’20]

Every string 𝑃 satisfies at least one of
𝑃 has 2𝑘 disjoint, long breaks c✾✿❁❁✾❃a✾✿❁❁✾❃a
𝑃 has disjoint repetitive regions that cover 3/8 𝑃 ✾❃aaaaaa✾❃ccaccc✾❃
𝑃 is almost periodic. aaacaaaaaaaaacaaaaaaa

Analyze implies Main Result.

Philip Wellnitz
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Structural Results for Approximate String Matching

Key Intermediate Result (Analyze) [CKoW’20]

Every string 𝑃 satisfies at least one of

𝑃 has 2𝑘 disjoint, long breaks c✾✿❁❁✾❃a✾✿❁❁✾❃a

𝑃 has disjoint repetitive regions that cover 3/8 𝑃 ✾❃aaaaaa✾❃ccaccc✾❃

𝑃 is almost periodic. aaacaaaaaaaaacaaaaaaa

𝑃

Breaks 𝐵 = { }

Repetitive Regions 𝑅 = { }

Philip Wellnitz
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Structural Results for Approximate String Matching

Key Intermediate Result (Analyze) [CKoW’20]

Every string 𝑃 satisfies at least one of

𝑃 has 2𝑘 disjoint, long breaks c✾✿❁❁✾❃a✾✿❁❁✾❃a

𝑃 has disjoint repetitive regions that cover 3/8 𝑃 ✾❃aaaaaa✾❃ccaccc✾❃

𝑃 is almost periodic. aaacaaaaaaaaacaaaaaaa

𝑃

Breaks 𝐵 = { }

Repetitive Regions 𝑅 = { }

Process 𝑃 from left to right, 𝑝/8𝑘 new characters at a time.

Philip Wellnitz
From Strings to Seaweeds: Modern Tools for Classical Problems
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Structural Results for Approximate String Matching

Key Intermediate Result (Analyze) [CKoW’20]

Every string 𝑃 satisfies at least one of

𝑃 has 2𝑘 disjoint, long breaks c✾✿❁❁✾❃a✾✿❁❁✾❃a

𝑃 has disjoint repetitive regions that cover 3/8 𝑃 ✾❃aaaaaa✾❃ccaccc✾❃

𝑃 is almost periodic. aaacaaaaaaaaacaaaaaaa

𝑃

Breaks 𝐵 = { }

Repetitive Regions 𝑅 = { }

If a fragment is a break, add it to the found breaks.

Philip Wellnitz
From Strings to Seaweeds: Modern Tools for Classical Problems
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Structural Results for Approximate String Matching

Key Intermediate Result (Analyze) [CKoW’20]

Every string 𝑃 satisfies at least one of

𝑃 has 2𝑘 disjoint, long breaks c✾✿❁❁✾❃a✾✿❁❁✾❃a

𝑃 has disjoint repetitive regions that cover 3/8 𝑃 ✾❃aaaaaa✾❃ccaccc✾❃

𝑃 is almost periodic. aaacaaaaaaaaacaaaaaaa

𝑃

Breaks 𝐵 = { }

Repetitive Regions 𝑅 = { }

Otherwise, find the shortest prefix (longer than 𝑝/8𝑘) that is a repetitive region.

Philip Wellnitz
From Strings to Seaweeds: Modern Tools for Classical Problems
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Structural Results for Approximate String Matching

Key Intermediate Result (Analyze) [CKoW’20]

Every string 𝑃 satisfies at least one of
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𝑃 has disjoint repetitive regions that cover 3/8 𝑃 ✾❃aaaaaa✾❃ccaccc✾❃

𝑃 is almost periodic. aaacaaaaaaaaacaaaaaaa

𝑃

Breaks 𝐵 = { }

Repetitive Regions 𝑅 = { }

Otherwise, find the shortest prefix (longer than 𝑝/8𝑘) that is a repetitive region.
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Structural Results for Approximate String Matching

Key Intermediate Result (Analyze) [CKoW’20]

Every string 𝑃 satisfies at least one of

𝑃 has 2𝑘 disjoint, long breaks c✾✿❁❁✾❃a✾✿❁❁✾❃a

𝑃 has disjoint repetitive regions that cover 3/8 𝑃 ✾❃aaaaaa✾❃ccaccc✾❃

𝑃 is almost periodic. aaacaaaaaaaaacaaaaaaa

𝑃

Repetitive Regions 𝑅 = {

Breaks 𝐵 = { , , , }

, }

If we found 2𝑘 breaks, return the breaks.

Philip Wellnitz
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Structural Results for Approximate String Matching

Key Intermediate Result (Analyze) [CKoW’20]

Every string 𝑃 satisfies at least one of

𝑃 has 2𝑘 disjoint, long breaks c✾✿❁❁✾❃a✾✿❁❁✾❃a

𝑃 has disjoint repetitive regions that cover 3/8 𝑃 ✾❃aaaaaa✾❃ccaccc✾❃

𝑃 is almost periodic. aaacaaaaaaaaacaaaaaaa

𝑃

Breaks 𝐵 = { , , }

, }Repetitive Regions 𝑅 = {

If the total length of the repetitive regions is > 3/8 ⋅ 𝑝, return the repetitive regions.

Philip Wellnitz
From Strings to Seaweeds: Modern Tools for Classical Problems
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Structural Results for Approximate String Matching

Key Intermediate Result (Analyze) [CKoW’20]

Every string 𝑃 satisfies at least one of

𝑃 has 2𝑘 disjoint, long breaks c✾✿❁❁✾❃a✾✿❁❁✾❃a

𝑃 has disjoint repetitive regions that cover 3/8 𝑃 ✾❃aaaaaa✾❃ccaccc✾❃

𝑃 is almost periodic. aaacaaaaaaaaacaaaaaaa

𝑃

Repetitive Regions 𝑅 = {

Breaks 𝐵 = { , , }

}

If we reach the end of 𝑃, try to find a single repetitive region starting from the end.

Philip Wellnitz
From Strings to Seaweeds: Modern Tools for Classical Problems
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Structural Results for Approximate String Matching

Key Intermediate Result (Analyze) [CKoW’20]

Every string 𝑃 satisfies at least one of

𝑃 has 2𝑘 disjoint, long breaks c✾✿❁❁✾❃a✾✿❁❁✾❃a

𝑃 has disjoint repetitive regions that cover 3/8 𝑃 ✾❃aaaaaa✾❃ccaccc✾❃

𝑃 is almost periodic. aaacaaaaaaaaacaaaaaaa

𝑃

Breaks 𝐵 = { }

Repetitive Regions 𝑅 = { }

If we reach the end of 𝑃, try to find a single repetitive region starting from the end.

Philip Wellnitz
From Strings to Seaweeds: Modern Tools for Classical Problems



28-10

Structural Results for Approximate String Matching

Key Intermediate Result (Analyze) [CKoW’20]

Every string 𝑃 satisfies at least one of

𝑃 has 2𝑘 disjoint, long breaks c✾✿❁❁✾❃a✾✿❁❁✾❃a

𝑃 has disjoint repetitive regions that cover 3/8 𝑃 ✾❃aaaaaa✾❃ccaccc✾❃

𝑃 is almost periodic. aaacaaaaaaaaacaaaaaaa

𝑃

Breaks 𝐵 = { }

}Repetitive Regions 𝑅 = {

If we found a repetitive region, return it.

Philip Wellnitz
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Structural Results for Approximate String Matching

Key Intermediate Result (Analyze) [CKoW’20]

Every string 𝑃 satisfies at least one of

𝑃 has 2𝑘 disjoint, long breaks c✾✿❁❁✾❃a✾✿❁❁✾❃a

𝑃 has disjoint repetitive regions that cover 3/8 𝑃 ✾❃aaaaaa✾❃ccaccc✾❃

𝑃 is almost periodic. aaacaaaaaaaaacaaaaaaa

𝑃

Breaks 𝐵 = { }

Repetitive Regions 𝑅 = { }

If we again don’t obtain a repetitive region, 𝑃 is almost periodic.

Philip Wellnitz
From Strings to Seaweeds: Modern Tools for Classical Problems



28-12

Structural Results for Approximate String Matching

Key Intermediate Result (Analyze) [CKoW’20]

Every string 𝑃 satisfies at least one of

𝑃 has 2𝑘 disjoint, long breaks c✾✿❁❁✾❃a✾✿❁❁✾❃a

𝑃 has disjoint repetitive regions that cover 3/8 𝑃 ✾❃aaaaaa✾❃ccaccc✾❃

𝑃 is almost periodic. aaacaaaaaaaaacaaaaaaa

Philip Wellnitz
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New Insights, Same Old Problems

How do we turn our insights
into faster algorithms?

Philip Wellnitz
From Strings to Seaweeds: Modern Tools for Classical Problems
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New Insights, Same Old Problems

How do we turn our insights into faster algorithms?

Need to tackle three cases.
𝑃 contains 2𝑘 disjoint breaks;
𝑃 contains disjoint repetitive regions 𝑅𝑖;
𝑃 is almost periodic

Philip Wellnitz
From Strings to Seaweeds: Modern Tools for Classical Problems
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New Insights, Same Old Problems

How do we turn our insights into faster algorithms?

Need to tackle three two cases.
𝑃 contains 2𝑘 disjoint breaks;
𝑃 contains disjoint repetitive regions 𝑅𝑖; Follows from the other two cases.
𝑃 is almost periodic

Philip Wellnitz
From Strings to Seaweeds: Modern Tools for Classical Problems
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The Marking Trick and How to Handle Easy Patterns [Variation of CH’98]

Have: 2𝑘 disjoint breaks 𝐵1, … , 𝐵2𝑘 in 𝑃 such that

|𝐵𝑖| = Θ(|𝑃|/𝑘) and |𝐵𝑖| is not periodic

In any 𝑘-edit occ, at least 1 break is matched exactly.

𝑃

𝑇 ⋯ ⋯

Philip Wellnitz
From Strings to Seaweeds: Modern Tools for Classical Problems
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The Marking Trick and How to Handle Easy Patterns [Variation of CH’98]

Have: 2𝑘 disjoint breaks 𝐵1, … , 𝐵2𝑘 in 𝑃 such that

|𝐵𝑖| = Θ(|𝑃|/𝑘) and |𝐵𝑖| is not periodic

In any 𝑘-edit occ, at least 1 break is matched exactly.
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The Marking Trick and How to Handle Easy Patterns [Variation of CH’98]

Have: 2𝑘 disjoint breaks 𝐵1, … , 𝐵2𝑘 in 𝑃 such that

|𝐵𝑖| = Θ(|𝑃|/𝑘) and |𝐵𝑖| is not periodic

In any 𝑘-edit occ, at least 1 break is matched exactly.
Algorithm idea: For each 𝐵𝑖, find exact matches of 𝐵𝑖 in 𝑇

𝑃

𝑇 ⋯ ⋯

Philip Wellnitz
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The Marking Trick and How to Handle Easy Patterns [Variation of CH’98]

Have: 2𝑘 disjoint breaks 𝐵1, … , 𝐵2𝑘 in 𝑃 such that

|𝐵𝑖| = Θ(|𝑃|/𝑘) and |𝐵𝑖| is not periodic

In any 𝑘-edit occ, at least 1 break is matched exactly.
Algorithm idea: For each 𝐵𝑖, find exact matches of 𝐵𝑖 in 𝑇,
Try to extend each exact match into an occ using [LV’89]
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The Marking Trick and How to Handle Easy Patterns [Variation of CH’98]
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|𝐵𝑖| = Θ(|𝑃|/𝑘) and |𝐵𝑖| is not periodic
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Algorithm idea: For each 𝐵𝑖, find exact matches of 𝐵𝑖 in 𝑇,
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Have at most |𝑇|/(|𝐵𝑖|/2) = Θ(𝑘|𝑇|/|𝑃|) exact occ’s of 𝐵𝑖
 𝑂(𝑘2|𝑇|/|𝑃|) calls to [LV’89]; 𝑂(𝑘4|𝑇|/|𝑃|) time in total

𝑃

𝑇 ⋯ ⋯

Philip Wellnitz
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𝑃

𝑇 ⋯ ⋯

Philip Wellnitz
From Strings to Seaweeds: Modern Tools for Classical Problems



31-7

The Marking Trick and How to Handle Easy Patterns [Variation of CH’98]
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The Marking Trick and How to Handle Easy Patterns [Variation of CH’98]

Have: 2𝑘 disjoint breaks 𝐵1, … , 𝐵2𝑘 in 𝑃 such that

|𝐵𝑖| = Θ(|𝑃|/𝑘) and |𝐵𝑖| is not periodic

In any 𝑘-edit occ, at least 𝑘 breaks are matched exactly.
Algorithm idea: For each 𝐵𝑖, find exact matches of 𝐵𝑖 in 𝑇
Run [LV’89] only for positions in 𝑇 where at least 𝑘 breaks match exactly How?
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The Marking Trick and How to Handle Easy Patterns [Variation of CH’98]
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The Marking Trick and How to Handle Easy Patterns [Variation of CH’98]

Have: 2𝑘 disjoint breaks 𝐵1, … , 𝐵2𝑘 in 𝑃 such that
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Algorithm idea: For each 𝐵𝑖, find exact matches of 𝐵𝑖 in 𝑇
Run [LV’89] only for positions in 𝑇 where at least 𝑘 breaks match exactly How?
If 𝐵𝑖 = 𝑃[ ℓ𝑖 . . ) = 𝑇[ 𝑎 . . ), add a mark to 𝑇[ ⌊(𝑎 − ℓ𝑖)/𝑘⌋ ]; run [LV’89] for pos w/ ≥ 𝑘marks

𝑃

𝑇 ⋯ ⋯

Philip Wellnitz
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|𝐵𝑖| = Θ(|𝑃|/𝑘) and |𝐵𝑖| is not periodic

In any 𝑘-edit occ, at least 𝑘 breaks are matched exactly.
Algorithm idea: For each 𝐵𝑖, find exact matches of 𝐵𝑖 in 𝑇
Run [LV’89] only for positions in 𝑇 where at least 𝑘 breaks match exactly How?
If 𝐵𝑖 = 𝑃[ ℓ𝑖 . . ) = 𝑇[ 𝑎 . . ), add a mark to 𝑇[ ⌊(𝑎 − ℓ𝑖)/𝑘⌋ ]; run [LV’89] for pos w/ ≥ 𝑘marks

𝑃

𝑇 ⋯ ⋯
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The Marking Trick and How to Handle Easy Patterns [Variation of CH’98]

Have: 2𝑘 disjoint breaks 𝐵1, … , 𝐵2𝑘 in 𝑃 such that

|𝐵𝑖| = Θ(|𝑃|/𝑘) and |𝐵𝑖| is not periodic

In any 𝑘-edit occ, at least 𝑘 breaks are matched exactly.
Algorithm idea: For each 𝐵𝑖, find exact matches of 𝐵𝑖 in 𝑇
Run [LV’89] only for positions in 𝑇 where at least 𝑘 breaks match exactly How?
If 𝐵𝑖 = 𝑃[ ℓ𝑖 . . ) = 𝑇[ 𝑎 . . ), add a mark to 𝑇[ ⌊(𝑎 − ℓ𝑖)/𝑘⌋ ]; run [LV’89] for pos w/ ≥ 𝑘marks

𝑃

𝑇 ⋯ ⋯
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The Marking Trick and How to Handle Easy Patterns [Variation of CH’98]

Have: 2𝑘 disjoint breaks 𝐵1, … , 𝐵2𝑘 in 𝑃 such that

|𝐵𝑖| = Θ(|𝑃|/𝑘) and |𝐵𝑖| is not periodic

In any 𝑘-edit occ, at least 𝑘 breaks are matched exactly.
Algorithm idea: For each 𝐵𝑖, find exact matches of 𝐵𝑖 in 𝑇
Run [LV’89] only for positions in 𝑇 where at least 𝑘 breaks match exactly How?
If 𝐵𝑖 = 𝑃[ ℓ𝑖 . . ) = 𝑇[ 𝑎 . . ), add a mark to 𝑇[ ⌊(𝑎 − ℓ𝑖)/𝑘⌋ ]; run [LV’89] for pos w/ ≥ 𝑘marks
 𝑂(𝑘2|𝑇|/|𝑃|) marks in total; 𝑂(𝑘|𝑇|/|𝑃|) calls to [LV’89]; 𝑂(𝑘3|𝑇|/|𝑃|) time

𝑃

𝑇 ⋯ ⋯
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New Insights, Same Old Problems

How do we turn our insights into faster algorithms?

Need to tackle three one case.
𝑃 contains 2𝑘 disjoint breaks; Adaption of [Cole,Hariharan’98] yields
𝑂(|𝑇| + |𝑇|/|𝑃| ⋅ 𝑘3).
𝑃 contains disjoint repetitive regions 𝑅𝑖; Follows from the other two cases.
𝑃 is almost periodic
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New Insights, Same Old Problems

How do we turn our insights into faster algorithms?

Need to tackle three one case.
𝑃 contains 2𝑘 disjoint breaks; Adaption of [Cole,Hariharan’98] yields
𝑂(|𝑇| + |𝑇|/|𝑃| ⋅ 𝑘3).
𝑃 contains disjoint repetitive regions 𝑅𝑖; Follows from the other two cases.
𝑃 is almost periodic

Reduction to Periodic Patterns [CKoW’22]

Algorithm for almost periodic case in time �̃�(|𝑇| + 𝑘𝑎 ⋅ |𝑇|/|𝑃|), for 𝑎 ≥ 3
⟹ Algorithm for general case in time �̃�(|𝑇| + 𝑘𝑎 ⋅ |𝑇|/|𝑃|)
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New Insights, Same Old Problems

Reduction to Periodic Patterns [CKoW’22]

Algorithm for almost periodic case in time �̃�(|𝑇| + 𝑘𝑎 ⋅ |𝑇|/|𝑃|), for 𝑎 ≥ 3
⟹ Algorithm for general case in time �̃�(|𝑇| + 𝑘𝑎 ⋅ |𝑇|/|𝑃|)

Need to tackle: 𝑃 is almost periodic
In [CKoW’20], use elaborate marking scheme to obtain 𝑂(|𝑇| + |𝑇|/|𝑃| ⋅ 𝑘4) algorithm
 Not faster than [Cole,Hariharan’98]
In [CKoW’22], trade-off between

Refinement of algorithm from [CKoW’20]
New algorithm based on “Seaweed Technology” of [Tiskin’10,’15]

 Yields 𝑂(|𝑇| + |𝑇|/|𝑃| ⋅ 𝑘3.5) algorithm (more details soon)

Philip Wellnitz
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New Insights, Same Old Problems

Reduction to Periodic Patterns [CKoW’22]

Algorithm for almost periodic case in time �̃�(|𝑇| + 𝑘𝑎 ⋅ |𝑇|/|𝑃|), for 𝑎 ≥ 3
⟹ Algorithm for general case in time �̃�(|𝑇| + 𝑘𝑎 ⋅ |𝑇|/|𝑃|)
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In [CKoW’22], trade-off between

Refinement of algorithm from [CKoW’20]
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Dynamic Puzzle Matching and How to Handle Not So Easy Patterns

Have: 𝑃 is at ED ≤ 2𝑘 to a string with period 𝑄 of len 𝑂(|𝑃|/𝑘)

If 𝑃 is close to 𝑄∞, then so is 𝑇 have alignments 𝐴𝑃 ∶ 𝑃 𝑄∞ and 𝐴𝑇 ∶ 𝑇 𝑄∞

𝐴𝑇 and 𝐴𝑃 induce tile partition of 𝑃 and 𝑇; all but 𝑂(𝑘) tiles are 𝑄

𝑃

𝑄∞ 𝑄 𝑄 𝑄 𝑄 𝑄 𝑄 𝑄 𝑄 𝑄 𝑄 𝑄

𝑄 𝑄 𝑄 𝑄 𝑄 𝑄 𝑄
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Dynamic Puzzle Matching and How to Handle Not So Easy Patterns

Have: 𝑃 is at ED ≤ 2𝑘 to a string with period 𝑄 of len 𝑂(|𝑃|/𝑘)

If 𝑃 is close to 𝑄∞, then so is 𝑇 have alignments 𝐴𝑃 ∶ 𝑃 𝑄∞ and 𝐴𝑇 ∶ 𝑇 𝑄∞

𝐴𝑇 and 𝐴𝑃 induce tile partition of 𝑃 and 𝑇; all but 𝑂(𝑘) tiles are 𝑄
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Dynamic Puzzle Matching and How to Handle Not So Easy Patterns

Have: 𝑃 is at ED ≤ 2𝑘 to a string with period 𝑄 of len 𝑂(|𝑃|/𝑘)

If 𝑃 is close to 𝑄∞, then so is 𝑇 have alignments 𝐴𝑃 ∶ 𝑃 𝑄∞ and 𝐴𝑇 ∶ 𝑇 𝑄∞

𝐴𝑇 and 𝐴𝑃 induce tile partition of 𝑃 and 𝑇; all but 𝑂(𝑘) tiles are 𝑄
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Dynamic Puzzle Matching and How to Handle Not So Easy Patterns

Have: 𝑃 is at ED ≤ 2𝑘 to a string with period 𝑄 of len 𝑂(|𝑃|/𝑘)

If 𝑃 is close to 𝑄∞, then so is 𝑇 have alignments 𝐴𝑃 ∶ 𝑃 𝑄∞ and 𝐴𝑇 ∶ 𝑇 𝑄∞

𝐴𝑇 and 𝐴𝑃 induce tile partition of 𝑃 and 𝑇; all but 𝑂(𝑘) tiles are 𝑄
Imagine shifting 𝑃 along 𝑇, one tile/𝑄 at a time
 For each shift, want to compute occs
 Between shifts, 𝑂(𝑘) tiles get aligned to a new/different tile

𝑄 𝑄 𝑄 𝑄 𝑄 𝑄 𝑄 𝑄
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𝑄∞ ⋯

𝑇 ⋯
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Dynamic Puzzle Matching and How to Handle Not So Easy Patterns

Have: 𝑃 is at ED ≤ 2𝑘 to a string with period 𝑄 of len 𝑂(|𝑃|/𝑘)

If 𝑃 is close to 𝑄∞, then so is 𝑇 have alignments 𝐴𝑃 ∶ 𝑃 𝑄∞ and 𝐴𝑇 ∶ 𝑇 𝑄∞

𝐴𝑇 and 𝐴𝑃 induce tile partition of 𝑃 and 𝑇; all but 𝑂(𝑘) tiles are 𝑄
Imagine shifting 𝑃 along 𝑇, one tile/𝑄 at a time
 For each shift, want to compute occs
 Between shifts, 𝑂(𝑘) tiles get aligned to a new/different tile
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Dynamic Puzzle Matching and How to Handle Not So Easy Patterns

Have: 𝑃 is at ED ≤ 2𝑘 to a string with period 𝑄 of len 𝑂(|𝑃|/𝑘)

If 𝑃 is close to 𝑄∞, then so is 𝑇 have alignments 𝐴𝑃 ∶ 𝑃 𝑄∞ and 𝐴𝑇 ∶ 𝑇 𝑄∞

𝐴𝑇 and 𝐴𝑃 induce tile partition of 𝑃 and 𝑇; all but 𝑂(𝑘) tiles are 𝑄
Imagine shifting 𝑃 along 𝑇, one tile/𝑄 at a time
 For each shift, want to compute occs
 Between shifts, 𝑂(𝑘) tiles get aligned to a new/different tile

Dynamic Puzzle Matching [CKoW’22]

Input: integer 𝑘, family F of strings w/ special string 𝑄, s.t. ∑𝐹∈F ED(𝐹, 𝑄) = 𝑂(𝑘).
Maintain: sequence 𝐼 = (𝑈1, 𝑉1) ⋯ (𝑈𝑧, 𝑉𝑧) of pairs from F2

Updates: Insertions and Deletions of pairs in 𝐼
Queries: Compute 𝑘-edit occ’s of 𝑈1⋯𝑈𝑧 in 𝑉1⋯𝑉𝑧
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Dynamic Puzzle Matching and How to Handle Not So Easy Patterns

Have: 𝑃 is at ED ≤ 2𝑘 to a string with period 𝑄 of len 𝑂(|𝑃|/𝑘)

If 𝑃 is close to 𝑄∞, then so is 𝑇 have alignments 𝐴𝑃 ∶ 𝑃 𝑄∞ and 𝐴𝑇 ∶ 𝑇 𝑄∞

𝐴𝑇 and 𝐴𝑃 induce tile partition of 𝑃 and 𝑇; all but 𝑂(𝑘) tiles are 𝑄
Imagine shifting 𝑃 along 𝑇, one tile/𝑄 at a time
 For each shift, want to compute occs
 Between shifts, 𝑂(𝑘) tiles get aligned to a new/different tile

Dynamic Puzzle Matching [CKoW’22]

Input: integer 𝑘, family F of strings w/ special string 𝑄, s.t. ∑𝐹∈F ED(𝐹, 𝑄) = 𝑂(𝑘).
Maintain: sequence 𝐼 = (𝑈1, 𝑉1) ⋯ (𝑈𝑧, 𝑉𝑧) of pairs from F2

Updates: Insertions and Deletions of pairs in 𝐼
Queries: Compute 𝑘-edit occ’s of 𝑈1⋯𝑈𝑧 in 𝑉1⋯𝑉𝑧

Main Result (using Seaweeds) [CKoW’22]

After �̃�(𝑘3) preprocessing, updates and queries in time �̃�(𝑘)
Philip Wellnitz
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Using Dynamic Puzzle Matching

Dynamic Puzzle Matching [CKoW’22]

Input: integer 𝑘, family F of strings w/ special string 𝑄, s.t. ∑𝐹∈F ED(𝐹, 𝑄) = 𝑂(𝑘).

Maintain: sequence 𝐼 = (𝑈1, 𝑉1) ⋯ (𝑈𝑧, 𝑉𝑧) of pairs from F2

Updates: Insertions and Deletions of pairs in 𝐼
Queries: Compute 𝑘-edit occ’s of 𝑈1⋯𝑈𝑧 in 𝑉1⋯𝑉𝑧

Main Result: After �̃�(𝑘3) preprocessing, updates and queries in time �̃�(𝑘)

For simplicity: assume |𝑄| ≈ √|𝑃|; ignore handling of initial and final pairs

P

T
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Using Dynamic Puzzle Matching

Dynamic Puzzle Matching [CKoW’22]

Input: integer 𝑘, family F of strings w/ special string 𝑄, s.t. ∑𝐹∈F ED(𝐹, 𝑄) = 𝑂(𝑘).

Maintain: sequence 𝐼 = (𝑈1, 𝑉1) ⋯ (𝑈𝑧, 𝑉𝑧) of pairs from F2

Updates: Insertions and Deletions of pairs in 𝐼
Queries: Compute 𝑘-edit occ’s of 𝑈1⋯𝑈𝑧 in 𝑉1⋯𝑉𝑧

Main Result: After �̃�(𝑘3) preprocessing, updates and queries in time �̃�(𝑘)

For simplicity: assume |𝑄| ≈ √|𝑃|; ignore handling of initial and final pairs
> 𝑘 copies of 𝑄 in 𝑃⟹ ≥ 1 copy of 𝑄 matched exactly

T

P
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Using Dynamic Puzzle Matching

Dynamic Puzzle Matching [CKoW’22]

Input: integer 𝑘, family F of strings w/ special string 𝑄, s.t. ∑𝐹∈F ED(𝐹, 𝑄) = 𝑂(𝑘).

Maintain: sequence 𝐼 = (𝑈1, 𝑉1) ⋯ (𝑈𝑧, 𝑉𝑧) of pairs from F2

Updates: Insertions and Deletions of pairs in 𝐼
Queries: Compute 𝑘-edit occ’s of 𝑈1⋯𝑈𝑧 in 𝑉1⋯𝑉𝑧

Main Result: After �̃�(𝑘3) preprocessing, updates and queries in time �̃�(𝑘)

For simplicity: assume |𝑄| ≈ √|𝑃|; ignore handling of initial and final pairs
> 𝑘 copies of 𝑄 in 𝑃⟹ ≥ 1 copy of 𝑄 matched exactly
 Starting pos of 𝑘-edit occ’s in 𝑇 within 𝑂(𝑘) from endpoints of tiles

T

P
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Using Dynamic Puzzle Matching

Dynamic Puzzle Matching [CKoW’22]

Input: integer 𝑘, family F of strings w/ special string 𝑄, s.t. ∑𝐹∈F ED(𝐹, 𝑄) = 𝑂(𝑘).

Maintain: sequence 𝐼 = (𝑈1, 𝑉1) ⋯ (𝑈𝑧, 𝑉𝑧) of pairs from F2

Updates: Insertions and Deletions of pairs in 𝐼
Queries: Compute 𝑘-edit occ’s of 𝑈1⋯𝑈𝑧 in 𝑉1⋯𝑉𝑧

Main Result: After �̃�(𝑘3) preprocessing, updates and queries in time �̃�(𝑘)

For simplicity: assume |𝑄| ≈ √|𝑃|; ignore handling of initial and final pairs
> 𝑘 copies of 𝑄 in 𝑃⟹ ≥ 1 copy of 𝑄 matched exactly
 Starting pos of 𝑘-edit occ’s in 𝑇 within 𝑂(𝑘) from endpoints of tiles

T

P

m+ k
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Using Dynamic Puzzle Matching

Dynamic Puzzle Matching [CKoW’22]

Input: integer 𝑘, family F of strings w/ special string 𝑄, s.t. ∑𝐹∈F ED(𝐹, 𝑄) = 𝑂(𝑘).

Maintain: sequence 𝐼 = (𝑈1, 𝑉1) ⋯ (𝑈𝑧, 𝑉𝑧) of pairs from F2

Updates: Insertions and Deletions of pairs in 𝐼
Queries: Compute 𝑘-edit occ’s of 𝑈1⋯𝑈𝑧 in 𝑉1⋯𝑉𝑧

Main Result: After �̃�(𝑘3) preprocessing, updates and queries in time �̃�(𝑘)

For simplicity: assume |𝑄| ≈ √|𝑃|; ignore handling of initial and final pairs
> 𝑘 copies of 𝑄 in 𝑃⟹ ≥ 1 copy of 𝑄 matched exactly
 Starting pos of 𝑘-edit occ’s in 𝑇 within 𝑂(𝑘) from endpoints of tiles

P

T1
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Dynamic Puzzle Matching [CKoW’22]

Input: integer 𝑘, family F of strings w/ special string 𝑄, s.t. ∑𝐹∈F ED(𝐹, 𝑄) = 𝑂(𝑘).

Maintain: sequence 𝐼 = (𝑈1, 𝑉1) ⋯ (𝑈𝑧, 𝑉𝑧) of pairs from F2

Updates: Insertions and Deletions of pairs in 𝐼
Queries: Compute 𝑘-edit occ’s of 𝑈1⋯𝑈𝑧 in 𝑉1⋯𝑉𝑧

Main Result: After �̃�(𝑘3) preprocessing, updates and queries in time �̃�(𝑘)

For simplicity: assume |𝑄| ≈ √|𝑃|; ignore handling of initial and final pairs

P

T1

{ {} }
8

{ }{ } { }{ }{ }{ } { }

m+ k

I1

Philip Wellnitz
From Strings to Seaweeds: Modern Tools for Classical Problems
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Using Dynamic Puzzle Matching

Dynamic Puzzle Matching [CKoW’22]

Input: integer 𝑘, family F of strings w/ special string 𝑄, s.t. ∑𝐹∈F ED(𝐹, 𝑄) = 𝑂(𝑘).

Maintain: sequence 𝐼 = (𝑈1, 𝑉1) ⋯ (𝑈𝑧, 𝑉𝑧) of pairs from F2

Updates: Insertions and Deletions of pairs in 𝐼
Queries: Compute 𝑘-edit occ’s of 𝑈1⋯𝑈𝑧 in 𝑉1⋯𝑉𝑧

Main Result: After �̃�(𝑘3) preprocessing, updates and queries in time �̃�(𝑘)

For simplicity: assume |𝑄| ≈ √|𝑃|; ignore handling of initial and final pairs
Goal: Iterate over all 𝐼𝑗’s with one DPM instance

P

T1

{ {} }
8

{ }{ } { }{ }{ }{ } { }

m+ k

I1

Philip Wellnitz
From Strings to Seaweeds: Modern Tools for Classical Problems
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Using Dynamic Puzzle Matching

Dynamic Puzzle Matching [CKoW’22]

Input: integer 𝑘, family F of strings w/ special string 𝑄, s.t. ∑𝐹∈F ED(𝐹, 𝑄) = 𝑂(𝑘).

Maintain: sequence 𝐼 = (𝑈1, 𝑉1) ⋯ (𝑈𝑧, 𝑉𝑧) of pairs from F2

Updates: Insertions and Deletions of pairs in 𝐼
Queries: Compute 𝑘-edit occ’s of 𝑈1⋯𝑈𝑧 in 𝑉1⋯𝑉𝑧

Main Result: After �̃�(𝑘3) preprocessing, updates and queries in time �̃�(𝑘)

For simplicity: assume |𝑄| ≈ √|𝑃|; ignore handling of initial and final pairs
Goal: Iterate over all 𝐼𝑗’s with one DPM instance

T

P

{ {} }
8

{ }{ } { }{ }{ }{ } { }

m+ k

I1

Philip Wellnitz
From Strings to Seaweeds: Modern Tools for Classical Problems
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Using Dynamic Puzzle Matching

Dynamic Puzzle Matching [CKoW’22]

Input: integer 𝑘, family F of strings w/ special string 𝑄, s.t. ∑𝐹∈F ED(𝐹, 𝑄) = 𝑂(𝑘).

Maintain: sequence 𝐼 = (𝑈1, 𝑉1) ⋯ (𝑈𝑧, 𝑉𝑧) of pairs from F2

Updates: Insertions and Deletions of pairs in 𝐼
Queries: Compute 𝑘-edit occ’s of 𝑈1⋯𝑈𝑧 in 𝑉1⋯𝑉𝑧

Main Result: After �̃�(𝑘3) preprocessing, updates and queries in time �̃�(𝑘)

For simplicity: assume |𝑄| ≈ √|𝑃|; ignore handling of initial and final pairs
Goal: Iterate over all 𝐼𝑗’s with one DPM instance

T
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{ } { }

m+ k

I1

Philip Wellnitz
From Strings to Seaweeds: Modern Tools for Classical Problems
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Using Dynamic Puzzle Matching

Dynamic Puzzle Matching [CKoW’22]

Input: integer 𝑘, family F of strings w/ special string 𝑄, s.t. ∑𝐹∈F ED(𝐹, 𝑄) = 𝑂(𝑘).

Maintain: sequence 𝐼 = (𝑈1, 𝑉1) ⋯ (𝑈𝑧, 𝑉𝑧) of pairs from F2

Updates: Insertions and Deletions of pairs in 𝐼
Queries: Compute 𝑘-edit occ’s of 𝑈1⋯𝑈𝑧 in 𝑉1⋯𝑉𝑧

Main Result: After �̃�(𝑘3) preprocessing, updates and queries in time �̃�(𝑘)

For simplicity: assume |𝑄| ≈ √|𝑃|; ignore handling of initial and final pairs
Goal: Iterate over all 𝐼𝑗’s with one DPM instance
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Using Dynamic Puzzle Matching

Dynamic Puzzle Matching [CKoW’22]

Input: integer 𝑘, family F of strings w/ special string 𝑄, s.t. ∑𝐹∈F ED(𝐹, 𝑄) = 𝑂(𝑘).

Maintain: sequence 𝐼 = (𝑈1, 𝑉1) ⋯ (𝑈𝑧, 𝑉𝑧) of pairs from F2

Updates: Insertions and Deletions of pairs in 𝐼
Queries: Compute 𝑘-edit occ’s of 𝑈1⋯𝑈𝑧 in 𝑉1⋯𝑉𝑧

Main Result: After �̃�(𝑘3) preprocessing, updates and queries in time �̃�(𝑘)

For simplicity: assume |𝑄| ≈ √|𝑃|; ignore handling of initial and final pairs
Goal: Iterate over all 𝐼𝑗’s with one DPM instance
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Using Dynamic Puzzle Matching

Dynamic Puzzle Matching [CKoW’22]

Input: integer 𝑘, family F of strings w/ special string 𝑄, s.t. ∑𝐹∈F ED(𝐹, 𝑄) = 𝑂(𝑘).

Maintain: sequence 𝐼 = (𝑈1, 𝑉1) ⋯ (𝑈𝑧, 𝑉𝑧) of pairs from F2

Updates: Insertions and Deletions of pairs in 𝐼
Queries: Compute 𝑘-edit occ’s of 𝑈1⋯𝑈𝑧 in 𝑉1⋯𝑉𝑧

Main Result: After �̃�(𝑘3) preprocessing, updates and queries in time �̃�(𝑘)

For simplicity: assume |𝑄| ≈ √|𝑃|; ignore handling of initial and final pairs
Goal: Iterate over all 𝐼𝑗’s with one DPM instance
 Over Θ(√|𝑃|) shifts of 𝑃, need 𝑂(√|𝑃|𝑘) DPM-updates �̃�(𝑘3 + √|𝑃|𝑘2) time

{ {} }
8

{ }{ } { }{ }{ }

P

T2

{ {} }
8

{ }{ } { } { }{ }{ } { }

{ } { }

m+ k

I1

I2
Philip Wellnitz

From Strings to Seaweeds: Modern Tools for Classical Problems



36-1

Using Dynamic Puzzle Matching Better

Example 𝑘 = 2.
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Using Dynamic Puzzle Matching Better

Example 𝑘 = 2.

{ {} }
50

{ {} }
49

{ }

{ }I1

I2

{ }
50

{ }
51

{ {} }{ }I50 { }
99

{ {} }I51 { }
101

{ }I52 { }
102

{ {} }
3

{ {} }
2

{ }

{ }I48

I49

{ }
97

{ }
98

For plain run (𝑄, 𝑄)𝑦, at least 𝑦 − 𝑘 copies of 𝑄
matched exactly in 𝑘-edit occ

Philip Wellnitz
From Strings to Seaweeds: Modern Tools for Classical Problems
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Using Dynamic Puzzle Matching Better

Example 𝑘 = 2.

{ {} }
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{ {} }
3

{ }

{ }I ′
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I ′
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{ {} }{ }I ′
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52 { }

3

{ {} }
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48
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{ }
3

{ }
3

For plain run (𝑄, 𝑄)𝑦, at least 𝑦 − 𝑘 copies of 𝑄
matched exactly in 𝑘-edit occ
Cap exponents of plain runs at 𝑘 + 1

Philip Wellnitz
From Strings to Seaweeds: Modern Tools for Classical Problems
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Using Dynamic Puzzle Matching Better

Example 𝑘 = 2.

{ {} }
3

{ {} }
3
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{ }I ′
1

I ′
2

{ }
3

{ }
3

{ {} }{ }I ′
50 { }
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51 { }

3

{ }I ′
52 { }

3

{ {} }
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{ {} }
2

{ }

{ }I ′
48

I ′
49

{ }
3

{ }
3

For plain run (𝑄, 𝑄)𝑦, at least 𝑦 − 𝑘 copies of 𝑄
matched exactly in 𝑘-edit occ
Cap exponents of plain runs at 𝑘 + 1
 𝑂(𝑘) DPM-updates per pair of special tiles
 𝑂(𝑘2) pairs of special tiles �̃�(𝑘4) time

Philip Wellnitz
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Using Dynamic Puzzle Matching Better

Example 𝑘 = 2.

{ {} }
3

{ {} }
3

{ }

{ }I ′
1

I ′
2

{ }
3

{ }
3

{ {} }{ }I ′
50 { }

3

{ {} }I ′
51 { }

3

{ }I ′
52 { }

3

{ {} }
3

{ {} }
2

{ }

{ }I ′
48

I ′
49

{ }
3

{ }
3

For plain run (𝑄, 𝑄)𝑦, at least 𝑦 − 𝑘 copies of 𝑄
matched exactly in 𝑘-edit occ
Cap exponents of plain runs at √𝑘
 𝑂(√𝑘) DPM-updates per pair of special tiles
 𝑂(𝑘2) pairs of special tiles �̃�(𝑘3.5) time

Philip Wellnitz
From Strings to Seaweeds: Modern Tools for Classical Problems
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Using Dynamic Puzzle Matching Better

Example 𝑘 = 2.

{ {} }
3

{ {} }
3

{ }

{ }I ′
1

I ′
2

{ }
3

{ }
3

{ {} }{ }I ′
50 { }

3

{ {} }I ′
51 { }

3

{ }I ′
52 { }

3

{ {} }
3

{ {} }
2

{ }

{ }I ′
48

I ′
49

{ }
3

{ }
3

For plain run (𝑄, 𝑄)𝑦, at least 𝑦 − 𝑘 copies of 𝑄
matched exactly in 𝑘-edit occ
Cap exponents of plain runs at √𝑘
 𝑂(√𝑘) DPM-updates per pair of special tiles
 𝑂(𝑘2) pairs of special tiles �̃�(𝑘3.5) time
False positives if ≥ √𝑘 edits in run of (𝑄, 𝑄)!

Philip Wellnitz
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Using Dynamic Puzzle Matching Better

Example 𝑘 = 2.

{ {} }
3

{ {} }
3

{ }

{ }I ′
1

I ′
2

{ }
3

{ }
3

{ {} }{ }I ′
50 { }

3

{ {} }I ′
51 { }

3

{ }I ′
52 { }

3

{ {} }
3

{ {} }
2

{ }

{ }I ′
48

I ′
49

{ }
3

{ }
3

For plain run (𝑄, 𝑄)𝑦, at least 𝑦 − 𝑘 copies of 𝑄
matched exactly in 𝑘-edit occ
Cap exponents of plain runs at √𝑘
 𝑂(√𝑘) DPM-updates per pair of special tiles
 𝑂(𝑘2) pairs of special tiles �̃�(𝑘3.5) time
False positives if ≥ √𝑘 edits in run of (𝑄, 𝑄)!
 Filter out false positives using another
marking scheme �̃�(𝑘3.5) time in total (boring)

Philip Wellnitz
From Strings to Seaweeds: Modern Tools for Classical Problems
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Using Dynamic Puzzle Matching Better

Example 𝑘 = 2.

{ {} }
3

{ {} }
3

{ }

{ }I ′
1

I ′
2

{ }
3

{ }
3

{ {} }{ }I ′
50 { }

3

{ {} }I ′
51 { }

3

{ }I ′
52 { }

3

{ {} }
3

{ {} }
2

{ }

{ }I ′
48

I ′
49

{ }
3

{ }
3

For plain run (𝑄, 𝑄)𝑦, at least 𝑦 − 𝑘 copies of 𝑄
matched exactly in 𝑘-edit occ
Cap exponents of plain runs at √𝑘
 𝑂(√𝑘) DPM-updates per pair of special tiles
 𝑂(𝑘2) pairs of special tiles �̃�(𝑘3.5) time
False positives if ≥ √𝑘 edits in run of (𝑄, 𝑄)!
 Filter out false positives using another
marking scheme �̃�(𝑘3.5) time in total (boring)

Main Result [CKoW’22]

Pattern 𝑃, text 𝑇, threshold 𝑘; can compute starting pos of all
𝑘-edit occ’s in time �̃�(|𝑇| + 𝑘3.5 |𝑇|/|𝑃|).

Philip Wellnitz
From Strings to Seaweeds: Modern Tools for Classical Problems



37-1

Solving Dynamic Puzzle Matching

Dynamic Puzzle Matching [CKoW’22]

Input: integer 𝑘, family F of strings w/ special string 𝑄, s.t. ∑𝐹∈F ED(𝐹, 𝑄) = 𝑂(𝑘).

Maintain: sequence 𝐼 = (𝑈1, 𝑉1) ⋯ (𝑈𝑧, 𝑉𝑧) of pairs from F2

Updates: Insertions and Deletions of pairs in 𝐼
Queries: Compute 𝑘-edit occ’s of 𝑈1⋯𝑈𝑧 in 𝑉1⋯𝑉𝑧

Goal: After �̃�(𝑘3) preprocessing, updates and queries in time �̃�(𝑘)

General Idea
1 Store edit distance information for each pair (𝑈𝑖, 𝑉𝑖) suitable permutation

matrices allow this in 𝑂(𝑘) space
2 Show how to compose the information of different pairs in a suitable way 
“seaweed product”

3 Show how to compute said product efficiently

Philip Wellnitz
From Strings to Seaweeds: Modern Tools for Classical Problems
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Solving Dynamic Puzzle Matching

Dynamic Puzzle Matching [CKoW’22]

Input: integer 𝑘, family F of strings w/ special string 𝑄, s.t. ∑𝐹∈F ED(𝐹, 𝑄) = 𝑂(𝑘).

Maintain: sequence 𝐼 = (𝑈1, 𝑉1) ⋯ (𝑈𝑧, 𝑉𝑧) of pairs from F2

Updates: Insertions and Deletions of pairs in 𝐼
Queries: Compute 𝑘-edit occ’s of 𝑈1⋯𝑈𝑧 in 𝑉1⋯𝑉𝑧

Goal: After �̃�(𝑘3) preprocessing, updates and queries in time �̃�(𝑘)

General Idea
1 Store edit distance information for each pair (𝑈𝑖, 𝑉𝑖) suitable permutation

matrices allow this in 𝑂(𝑘) space
2 Show how to compose the information of different pairs in a suitable way 
“seaweed product”

3 Show how to compute said product efficiently

Philip Wellnitz
From Strings to Seaweeds: Modern Tools for Classical Problems



37-3

Solving Dynamic Puzzle Matching

Dynamic Puzzle Matching [CKoW’22]

Input: integer 𝑘, family F of strings w/ special string 𝑄, s.t. ∑𝐹∈F ED(𝐹, 𝑄) = 𝑂(𝑘).

Maintain: sequence 𝐼 = (𝑈1, 𝑉1) ⋯ (𝑈𝑧, 𝑉𝑧) of pairs from F2

Updates: Insertions and Deletions of pairs in 𝐼
Queries: Compute 𝑘-edit occ’s of 𝑈1⋯𝑈𝑧 in 𝑉1⋯𝑉𝑧

Goal: After �̃�(𝑘3) preprocessing, updates and queries in time �̃�(𝑘)

General Idea
1 Store edit distance information for each pair (𝑈𝑖, 𝑉𝑖) suitable permutation

matrices allow this in 𝑂(𝑘) space
2 Show how to compose the information of different pairs in a suitable way 
“seaweed product”

3 Show how to compute said product efficiently

Philip Wellnitz
From Strings to Seaweeds: Modern Tools for Classical Problems
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Solving Dynamic Puzzle Matching

Dynamic Puzzle Matching [CKoW’22]

Input: integer 𝑘, family F of strings w/ special string 𝑄, s.t. ∑𝐹∈F ED(𝐹, 𝑄) = 𝑂(𝑘).

Maintain: sequence 𝐼 = (𝑈1, 𝑉1) ⋯ (𝑈𝑧, 𝑉𝑧) of pairs from F2

Updates: Insertions and Deletions of pairs in 𝐼
Queries: Compute 𝑘-edit occ’s of 𝑈1⋯𝑈𝑧 in 𝑉1⋯𝑉𝑧

Goal: After �̃�(𝑘3) preprocessing, updates and queries in time �̃�(𝑘)

General Idea
1 Store edit distance information for each pair (𝑈𝑖, 𝑉𝑖) suitable permutation

matrices allow this in 𝑂(𝑘) space
2 Show how to compose the information of different pairs in a suitable way 
“seaweed product”

3 Show how to compute said product efficiently

Philip Wellnitz
From Strings to Seaweeds: Modern Tools for Classical Problems
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Solving Dynamic Puzzle Matching

Dynamic Puzzle Matching [CKoW’22]

Input: integer 𝑘, family F of strings w/ special string 𝑄, s.t. ∑𝐹∈F ED(𝐹, 𝑄) = 𝑂(𝑘).

Maintain: sequence 𝐼 = (𝑈1, 𝑉1) ⋯ (𝑈𝑧, 𝑉𝑧) of pairs from F2

Updates: Insertions and Deletions of pairs in 𝐼
Queries: Compute 𝑘-edit occ’s of 𝑈1⋯𝑈𝑧 in 𝑉1⋯𝑉𝑧

Goal: After �̃�(𝑘3) preprocessing, updates and queries in time �̃�(𝑘)

General Idea
1 Store edit distance information for each pair (𝑈𝑖, 𝑉𝑖) suitable permutation

matrices allow this in 𝑂(𝑘) space
2 Show how to compose the information of different pairs in a suitable way 
“seaweed product”

3 Show how to compute said product efficiently

Content Warning: Some technical computations ahead!

Philip Wellnitz
From Strings to Seaweeds: Modern Tools for Classical Problems
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Some Technical Definitions

𝐴 ∈ {0, 1}𝑛×𝑛 is permutation matrix: every row and every column has exactly one 1
 1-to-1 corresponds to permutation in 𝑆𝑛
For 𝑛 × 𝑛 matrix 𝐴, distribution matrix 𝐴Σ is (𝑛 + 1) × (𝑛 + 1) matrix with

𝐴Σ[ 𝑖, 𝑗 ] ∶= ∑
𝑖′≥𝑖
∑
𝑗′<𝑗
𝐴[ 𝑖′, 𝑗′ ]

For (𝑛 + 1) × (𝑛 + 1) matrix 𝐴, density matrix 𝐴� is 𝑛 × 𝑛 matrix with

𝐴�[ 𝑖, 𝑗 ] ∶= 𝐴[ 𝑖 + 1, 𝑗 ] + 𝐴[ 𝑖, 𝑗 + 1 ] − 𝐴[ 𝑖 + 1, 𝑗 + 1 ] − 𝐴[ 𝑖, 𝑗 ]

.(
0 1 0
1 0 0
0 0 1

)

(0, 0) (𝑛 − 1, 0)

(0, 𝑛 − 1) (𝑛 − 1, 𝑛 − 1)

Philip Wellnitz
From Strings to Seaweeds: Modern Tools for Classical Problems
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Some Technical Definitions

𝐴 ∈ {0, 1}𝑛×𝑛 is permutation matrix: every row and every column has exactly one 1
 1-to-1 corresponds to permutation in 𝑆𝑛
For 𝑛 × 𝑛 matrix 𝐴, distribution matrix 𝐴Σ is (𝑛 + 1) × (𝑛 + 1) matrix with

𝐴Σ[ 𝑖, 𝑗 ] ∶= ∑
𝑖′≥𝑖
∑
𝑗′<𝑗
𝐴[ 𝑖′, 𝑗′ ]

For (𝑛 + 1) × (𝑛 + 1) matrix 𝐴, density matrix 𝐴� is 𝑛 × 𝑛 matrix with

𝐴�[ 𝑖, 𝑗 ] ∶= 𝐴[ 𝑖 + 1, 𝑗 ] + 𝐴[ 𝑖, 𝑗 + 1 ] − 𝐴[ 𝑖 + 1, 𝑗 + 1 ] − 𝐴[ 𝑖, 𝑗 ]

.(
0 1 0
1 0 0
0 0 1

) ( 1 2 3
2 1 3 )

Philip Wellnitz
From Strings to Seaweeds: Modern Tools for Classical Problems
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Some Technical Definitions

𝐴 ∈ {0, 1}𝑛×𝑛 is permutation matrix: every row and every column has exactly one 1
 1-to-1 corresponds to permutation in 𝑆𝑛
For 𝑛 × 𝑛 matrix 𝐴, distribution matrix 𝐴Σ is (𝑛 + 1) × (𝑛 + 1) matrix with

𝐴Σ[ 𝑖, 𝑗 ] ∶= ∑
𝑖′≥𝑖
∑
𝑗′<𝑗
𝐴[ 𝑖′, 𝑗′ ]

For (𝑛 + 1) × (𝑛 + 1) matrix 𝐴, density matrix 𝐴� is 𝑛 × 𝑛 matrix with

𝐴�[ 𝑖, 𝑗 ] ∶= 𝐴[ 𝑖 + 1, 𝑗 ] + 𝐴[ 𝑖, 𝑗 + 1 ] − 𝐴[ 𝑖 + 1, 𝑗 + 1 ] − 𝐴[ 𝑖, 𝑗 ]

.(
0 1 0
1 0 0
0 0 1

)

Σ

= (

0 0 0 0
1 1 0 0
2 1 0 0
3 2 1 0

)

Philip Wellnitz
From Strings to Seaweeds: Modern Tools for Classical Problems
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Some Technical Definitions

𝐴 ∈ {0, 1}𝑛×𝑛 is permutation matrix: every row and every column has exactly one 1
 1-to-1 corresponds to permutation in 𝑆𝑛
For 𝑛 × 𝑛 matrix 𝐴, distribution matrix 𝐴Σ is (𝑛 + 1) × (𝑛 + 1) matrix with

𝐴Σ[ 𝑖, 𝑗 ] ∶= ∑
𝑖′≥𝑖
∑
𝑗′<𝑗
𝐴[ 𝑖′, 𝑗′ ]

For (𝑛 + 1) × (𝑛 + 1) matrix 𝐴, density matrix 𝐴� is 𝑛 × 𝑛 matrix with

𝐴�[ 𝑖, 𝑗 ] ∶= 𝐴[ 𝑖 + 1, 𝑗 ] + 𝐴[ 𝑖, 𝑗 + 1 ] − 𝐴[ 𝑖 + 1, 𝑗 + 1 ] − 𝐴[ 𝑖, 𝑗 ]

.(
0 1 0
1 0 0
0 0 1

)

Σ

= (

0 0 0 0
1 1 0 0
2 1 0 0
3 2 1 0

) =(

0 0 0 0
1 1 0 0
2 1 0 0
3 2 1 0

)

�

(
0 1 0
1 0 0
0 0 1

)
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Some Technical Definitions

𝐴 ∈ {0, 1}𝑛×𝑛 is permutation matrix: every row and every column has exactly one 1
 1-to-1 corresponds to permutation in 𝑆𝑛
For 𝑛 × 𝑛 matrix 𝐴, distribution matrix 𝐴Σ is (𝑛 + 1) × (𝑛 + 1) matrix with

𝐴Σ[ 𝑖, 𝑗 ] ∶= ∑
𝑖′≥𝑖
∑
𝑗′<𝑗
𝐴[ 𝑖′, 𝑗′ ]

For (𝑛 + 1) × (𝑛 + 1) matrix 𝐴, density matrix 𝐴� is 𝑛 × 𝑛 matrix with

𝐴�[ 𝑖, 𝑗 ] ∶= 𝐴[ 𝑖 + 1, 𝑗 ] + 𝐴[ 𝑖, 𝑗 + 1 ] − 𝐴[ 𝑖 + 1, 𝑗 + 1 ] − 𝐴[ 𝑖, 𝑗 ]

Lemma (Relation Density-Distribution Matrix)

For any 𝐴, have (𝐴Σ)� = 𝐴; for simple 𝐴, have (𝐴�)Σ = 𝐴 (first row and last col of 𝐴 are 0)
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Some Technical Definitions

𝐴 ∈ {0, 1}𝑛×𝑛 is permutation matrix: every row and every column has exactly one 1
 1-to-1 corresponds to permutation in 𝑆𝑛
For 𝑛 × 𝑛 matrix 𝐴, distribution matrix 𝐴Σ is (𝑛 + 1) × (𝑛 + 1) matrix with

𝐴Σ[ 𝑖, 𝑗 ] ∶= ∑
𝑖′≥𝑖
∑
𝑗′<𝑗
𝐴[ 𝑖′, 𝑗′ ]

For (𝑛 + 1) × (𝑛 + 1) matrix 𝐴, density matrix 𝐴� is 𝑛 × 𝑛 matrix with

𝐴�[ 𝑖, 𝑗 ] ∶= 𝐴[ 𝑖 + 1, 𝑗 ] + 𝐴[ 𝑖, 𝑗 + 1 ] − 𝐴[ 𝑖 + 1, 𝑗 + 1 ] − 𝐴[ 𝑖, 𝑗 ]

Lemma (Relation Density-Distribution Matrix)

For any 𝐴, have (𝐴Σ)� = 𝐴; for simple 𝐴, have (𝐴�)Σ = 𝐴 (first row and last col of 𝐴 are 0)
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Some Technical Definitions

𝐴 ∈ {0, 1}𝑛×𝑛 is permutation matrix: every row and every column has exactly one 1
 1-to-1 corresponds to permutation in 𝑆𝑛
For 𝑛 × 𝑛 matrix 𝐴, distribution matrix 𝐴Σ is (𝑛 + 1) × (𝑛 + 1) matrix with

𝐴Σ[ 𝑖, 𝑗 ] ∶= ∑
𝑖′≥𝑖
∑
𝑗′<𝑗
𝐴[ 𝑖′, 𝑗′ ]

For (𝑛 + 1) × (𝑛 + 1) matrix 𝐴, density matrix 𝐴� is 𝑛 × 𝑛 matrix with

𝐴�[ 𝑖, 𝑗 ] ∶= 𝐴[ 𝑖 + 1, 𝑗 ] + 𝐴[ 𝑖, 𝑗 + 1 ] − 𝐴[ 𝑖 + 1, 𝑗 + 1 ] − 𝐴[ 𝑖, 𝑗 ]

Lemma (Relation Density-Distribution Matrix)

For any 𝐴, have (𝐴Σ)� = 𝐴; for simple 𝐴, have (𝐴�)Σ = 𝐴 (first row and last col of 𝐴 are 0)

Lemma (Properties of Permutation Matrices)
Perm. matrix 𝐴; 𝐴Σ[ 𝑖, 0 ] = 𝐴Σ[ 𝑛 − 1, 𝑗 ] = 0 and 𝐴Σ[ 0, 𝑗 ] = 𝑗; 𝐴Σ[ 𝑖, 0 ] = 𝑛 − 1 − 𝑖 and 𝐴Σ[ 𝑖, 𝑗 ] ≥ 𝑗 − 𝑖
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Some More Technical Definitions

𝐴 ∈ {0, 1}𝑛×𝑛 is permutation matrix: every row and every column has exactly one 1

For 𝑛 × 𝑛 matrix 𝐴, distribution matrix 𝐴Σ is (𝑛 + 1) × (𝑛 + 1) matrix with

𝐴Σ[ 𝑖, 𝑗 ] ∶= ∑
𝑖′≥𝑖
∑
𝑗′<𝑗

𝐴[ 𝑖′, 𝑗′ ]

For (𝑛 + 1) × (𝑛 + 1) matrix 𝐴, density matrix 𝐴� is 𝑛 × 𝑛 matrix with

𝐴�[ 𝑖, 𝑗 ] ∶= 𝐴[ 𝑖 + 1, 𝑗 ] + 𝐴[ 𝑖, 𝑗 + 1 ] − 𝐴[ 𝑖 + 1, 𝑗 + 1 ] − 𝐴[ 𝑖, 𝑗 ]

𝐴 is simple: first row and last col are 0; for simple 𝐴 have 𝐴Σ� = 𝐴�Σ = 𝐴

𝐴 is Monge if 𝐴� ≥ 0; 𝐴 is unit-Monge if 𝐴� is a permutation matrix
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Some More Technical Definitions

𝐴 ∈ {0, 1}𝑛×𝑛 is permutation matrix: every row and every column has exactly one 1

For 𝑛 × 𝑛 matrix 𝐴, distribution matrix 𝐴Σ is (𝑛 + 1) × (𝑛 + 1) matrix with

𝐴Σ[ 𝑖, 𝑗 ] ∶= ∑
𝑖′≥𝑖
∑
𝑗′<𝑗

𝐴[ 𝑖′, 𝑗′ ]

For (𝑛 + 1) × (𝑛 + 1) matrix 𝐴, density matrix 𝐴� is 𝑛 × 𝑛 matrix with

𝐴�[ 𝑖, 𝑗 ] ∶= 𝐴[ 𝑖 + 1, 𝑗 ] + 𝐴[ 𝑖, 𝑗 + 1 ] − 𝐴[ 𝑖 + 1, 𝑗 + 1 ] − 𝐴[ 𝑖, 𝑗 ]

𝐴 is simple: first row and last col are 0; for simple 𝐴 have 𝐴Σ� = 𝐴�Σ = 𝐴

𝐴 is Monge if 𝐴� ≥ 0; 𝐴 is unit-Monge if 𝐴� is a permutation matrix

Lemma (Working with Permutation Matrices)
[Tis07, CP10]

For 𝑛 × 𝑛 permutation matrix 𝐴
can store in 𝑂(𝑛) space and can access 𝐴Σ[ 𝑖, 𝑗 ] in 𝑂(log 𝑛/ log log 𝑛)
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Some More Technical Definitions

𝐴 ∈ {0, 1}𝑛×𝑛 is permutation matrix: every row and every column has exactly one 1

For 𝑛 × 𝑛 matrix 𝐴, distribution matrix 𝐴Σ is (𝑛 + 1) × (𝑛 + 1) matrix with

𝐴Σ[ 𝑖, 𝑗 ] ∶= ∑
𝑖′≥𝑖
∑
𝑗′<𝑗

𝐴[ 𝑖′, 𝑗′ ]

For (𝑛 + 1) × (𝑛 + 1) matrix 𝐴, density matrix 𝐴� is 𝑛 × 𝑛 matrix with

𝐴�[ 𝑖, 𝑗 ] ∶= 𝐴[ 𝑖 + 1, 𝑗 ] + 𝐴[ 𝑖, 𝑗 + 1 ] − 𝐴[ 𝑖 + 1, 𝑗 + 1 ] − 𝐴[ 𝑖, 𝑗 ]

𝐴 is simple: first row and last col are 0; for simple 𝐴 have 𝐴Σ� = 𝐴�Σ = 𝐴

𝐴 is Monge if 𝐴� ≥ 0; 𝐴 is unit-Monge if 𝐴� is a permutation matrix

Lemma (Working with Permutation Matrices)
[Tis07, CP10]

For 𝑛 × 𝑛 permutation matrix 𝐴
can store in 𝑂(𝑛) space and can access 𝐴Σ[ 𝑖, 𝑗 ] in 𝑂(log 𝑛/ log log 𝑛) (recall yesterday’s Lem. 17)
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Detour: Characterizing Unit-Monge Matrices

Lemma
Any matrix 𝐴 ∈ ℤ𝑛+1×𝑛+1≥0 with

𝐴[ 𝑖, 0 ] = 0 𝐴[ 𝑖, 𝑛 ] = 𝑛 − 𝑖
𝐴[ 𝑛, 𝑗 ] = 0 𝐴[ 0, 𝑗 ] = 𝑗

𝐴 != ⎛⎜

⎝

0 0 ⋯ 0 0
1 0
⋯ ⋯

𝑛 − 1 0
𝑛 𝑛 − 1 ⋯ 1 0

⎞⎟

⎠

is a unit Monge matrix.

Show: each row/column of 𝐴� sums to 1
Consider

∑
𝑗

𝐴�[ 𝑖, 𝑗 ] = ∑
𝑗

𝐴[ 𝑖 + 1, 𝑗 ] + 𝐴[ 𝑖, 𝑗 + 1 ] − 𝐴[ 𝑖 + 1, 𝑗 + 1 ] − 𝐴[ 𝑖, 𝑗 ]

= 𝐴[ 𝑖 + 1, 0 ] + 𝐴[ 𝑖, 𝑛 ] − 𝐴[ 𝑖 + 1, 𝑛 ] − 𝐴[ 𝑖, 0 ]

= 0 + (𝑛 − 𝑖) − (𝑛 − 𝑖 − 1) − 0

= 1

𝐴 !=
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎝

0 ⋯ 0 0 ⋯ 0
1 0
⋯ ⋯
𝑛 − 𝑗 - + 0

𝑛 − 𝑗 + 1 + - 0
⋯ ⋯

𝑛 − 1 0
𝑛 ⋯ 𝑛 − 𝑖 𝑛 − 𝑖 − 1 ⋯ 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟

⎠

Philip Wellnitz
From Strings to Seaweeds: Modern Tools for Classical Problems



40-2

Detour: Characterizing Unit-Monge Matrices

Lemma
Any matrix 𝐴 ∈ ℤ𝑛+1×𝑛+1≥0 with

𝐴[ 𝑖, 0 ] = 0 𝐴[ 𝑖, 𝑛 ] = 𝑛 − 𝑖
𝐴[ 𝑛, 𝑗 ] = 0 𝐴[ 0, 𝑗 ] = 𝑗

𝐴 != ⎛⎜

⎝

0 0 ⋯ 0 0
1 0
⋯ ⋯

𝑛 − 1 0
𝑛 𝑛 − 1 ⋯ 1 0

⎞⎟

⎠

is a unit Monge matrix.

Show: each row/column of 𝐴� sums to 1
Consider

∑
𝑗

𝐴�[ 𝑖, 𝑗 ] = ∑
𝑗

𝐴[ 𝑖 + 1, 𝑗 ] + 𝐴[ 𝑖, 𝑗 + 1 ] − 𝐴[ 𝑖 + 1, 𝑗 + 1 ] − 𝐴[ 𝑖, 𝑗 ]

= 𝐴[ 𝑖 + 1, 0 ] + 𝐴[ 𝑖, 𝑛 ] − 𝐴[ 𝑖 + 1, 𝑛 ] − 𝐴[ 𝑖, 0 ]

= 0 + (𝑛 − 𝑖) − (𝑛 − 𝑖 − 1) − 0

= 1

𝐴 !=
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎝

0 ⋯ 0- 0+ ⋯ 0
1 +- -+ 0
⋯ +- -+ ⋯
𝑛 − 𝑗 +- -+ 0

𝑛 − 𝑗 + 1 +- -+ 0
⋯ +- -+ ⋯

𝑛 − 1 +- -+ 0
𝑛 ⋯ 𝑛 − 𝑖+ 𝑛 − 𝑖 − 1- ⋯ 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟

⎠
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Detour: Characterizing Unit-Monge Matrices

Lemma
Any matrix 𝐴 ∈ ℤ𝑛+1×𝑛+1≥0 with

𝐴[ 𝑖, 0 ] = 0 𝐴[ 𝑖, 𝑛 ] = 𝑛 − 𝑖
𝐴[ 𝑛, 𝑗 ] = 0 𝐴[ 0, 𝑗 ] = 𝑗

𝐴 != ⎛⎜

⎝

0 0 ⋯ 0 0
1 0
⋯ ⋯

𝑛 − 1 0
𝑛 𝑛 − 1 ⋯ 1 0

⎞⎟

⎠

is a unit Monge matrix.

Show: each row/column of 𝐴� sums to 1
Consider

∑
𝑗

𝐴�[ 𝑖, 𝑗 ] = ∑
𝑗

𝐴[ 𝑖 + 1, 𝑗 ] + 𝐴[ 𝑖, 𝑗 + 1 ] − 𝐴[ 𝑖 + 1, 𝑗 + 1 ] − 𝐴[ 𝑖, 𝑗 ]

= 𝐴[ 𝑖 + 1, 0 ] + 𝐴[ 𝑖, 𝑛 ] − 𝐴[ 𝑖 + 1, 𝑛 ] − 𝐴[ 𝑖, 0 ]

= 0 + (𝑛 − 𝑖) − (𝑛 − 𝑖 − 1) − 0

= 1

𝐴 !=
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎝

0 ⋯ 0- 0+ ⋯ 0
1 +- -+ 0
⋯ +- -+ ⋯
𝑛 − 𝑗 +- -+ 0

𝑛 − 𝑗 + 1 +- -+ 0
⋯ +- -+ ⋯

𝑛 − 1 +- -+ 0
𝑛 ⋯ 𝑛 − 𝑖+ 𝑛 − 𝑖 − 1- ⋯ 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟

⎠
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Monge Matrix × (min,+)-Product

𝐴 is simple: first row and last col are 0; for simple 𝐴 have 𝐴Σ� = 𝐴�Σ = 𝐴

𝐴 is Monge if 𝐴� ≥ 0; 𝐴 is unit-Monge if 𝐴� is a permutation matrix

For matrices 𝐴, 𝐵, the (min-+)-product 𝐴 ⊙ 𝐵 is

(𝐴 ⊙ 𝐵)[ 𝑖, 𝑘 ] ∶= min
𝑗
(𝐴[ 𝑖, 𝑗 ] + 𝐵[ 𝑗, 𝑘 ])

Recall: For adjacency matrix 𝐴 of (weighted) graph 𝐺, 𝐴⊙ℓ stores ℓ-hop dist in 𝐺
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Monge Matrix × (min,+)-Product

𝐴 is simple: first row and last col are 0; for simple 𝐴 have 𝐴Σ� = 𝐴�Σ = 𝐴

𝐴 is Monge if 𝐴� ≥ 0; 𝐴 is unit-Monge if 𝐴� is a permutation matrix

For matrices 𝐴, 𝐵, the (min-+)-product 𝐴 ⊙ 𝐵 is

(𝐴 ⊙ 𝐵)[ 𝑖, 𝑘 ] ∶= min
𝑗
(𝐴[ 𝑖, 𝑗 ] + 𝐵[ 𝑗, 𝑘 ])

Recall: For adjacency matrix 𝐴 of (weighted) graph 𝐺, 𝐴⊙ℓ stores ℓ-hop dist in 𝐺
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Monge Matrix × (min,+)-Product

𝐴 is simple: first row and last col are 0; for simple 𝐴 have 𝐴Σ� = 𝐴�Σ = 𝐴

𝐴 is Monge if 𝐴� ≥ 0; 𝐴 is unit-Monge if 𝐴� is a permutation matrix

For matrices 𝐴, 𝐵, the (min-+)-product 𝐴 ⊙ 𝐵 is

(𝐴 ⊙ 𝐵)[ 𝑖, 𝑘 ] ∶= min
𝑗
(𝐴[ 𝑖, 𝑗 ] + 𝐵[ 𝑗, 𝑘 ])

Recall: For adjacency matrix 𝐴 of (weighted) graph 𝐺, 𝐴⊙ℓ stores ℓ-hop dist in 𝐺
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Monge Matrix × (min,+)-Product

𝐴 is simple: first row and last col are 0; for simple 𝐴 have 𝐴Σ� = 𝐴�Σ = 𝐴

𝐴 is Monge if 𝐴� ≥ 0; 𝐴 is unit-Monge if 𝐴� is a permutation matrix

For matrices 𝐴, 𝐵, the (min-+)-product 𝐴 ⊙ 𝐵 is

(𝐴 ⊙ 𝐵)[ 𝑖, 𝑘 ] ∶= min
𝑗
(𝐴[ 𝑖, 𝑗 ] + 𝐵[ 𝑗, 𝑘 ])

Recall: For adjacency matrix 𝐴 of (weighted) graph 𝐺, 𝐴⊙ℓ stores ℓ-hop dist in 𝐺

Lemma (Unit-Monge Monoid) [Tis’07,’15]

For Monge 𝐴, 𝐵, the matrix 𝐴 ⊙ 𝐵 is Monge.
For simple unit-Monge 𝐴, 𝐵, the matrix 𝐴 ⊙ 𝐵 is simple unit-Monge.

Philip Wellnitz
From Strings to Seaweeds: Modern Tools for Classical Problems



41-5

Monge Matrix × (min,+)-Product

𝐴 is simple: first row and last col are 0; for simple 𝐴 have 𝐴Σ� = 𝐴�Σ = 𝐴

𝐴 is Monge if 𝐴� ≥ 0; 𝐴 is unit-Monge if 𝐴� is a permutation matrix

For matrices 𝐴, 𝐵, the (min-+)-product 𝐴 ⊙ 𝐵 is

(𝐴 ⊙ 𝐵)[ 𝑖, 𝑘 ] ∶= min
𝑗
(𝐴[ 𝑖, 𝑗 ] + 𝐵[ 𝑗, 𝑘 ])

Recall: For adjacency matrix 𝐴 of (weighted) graph 𝐺, 𝐴⊙ℓ stores ℓ-hop dist in 𝐺

Lemma (Unit-Monge Monoid) [Tis’07,’15]

For Monge 𝐴, 𝐵, the matrix 𝐴 ⊙ 𝐵 is Monge.
For simple unit-Monge 𝐴, 𝐵, the matrix 𝐴 ⊙ 𝐵 is simple unit-Monge.
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Monge Matrix × (min,+)-Product

𝐴 is simple: first row and last col are 0; for simple 𝐴 have 𝐴Σ� = 𝐴�Σ = 𝐴

𝐴 is Monge if 𝐴� ≥ 0; 𝐴 is unit-Monge if 𝐴� is a permutation matrix

For matrices 𝐴, 𝐵, the (min-+)-product 𝐴 ⊙ 𝐵 is

(𝐴 ⊙ 𝐵)[ 𝑖, 𝑘 ] ∶= min
𝑗
(𝐴[ 𝑖, 𝑗 ] + 𝐵[ 𝑗, 𝑘 ])

Recall: For adjacency matrix 𝐴 of (weighted) graph 𝐺, 𝐴⊙ℓ stores ℓ-hop dist in 𝐺

Lemma (Unit-Monge Monoid) [Tis’07,’15]

For Monge 𝐴, 𝐵, the matrix 𝐴 ⊙ 𝐵 is Monge.
For simple unit-Monge 𝐴, 𝐵, the matrix 𝐴 ⊙ 𝐵 is simple unit-Monge.

Proof: Board or exercise.
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Monge Matrix × (min,+)-Product

𝐴 is simple: first row and last col are 0; for simple 𝐴 have 𝐴Σ� = 𝐴�Σ = 𝐴

𝐴 is Monge if 𝐴� ≥ 0; 𝐴 is unit-Monge if 𝐴� is a permutation matrix

For matrices 𝐴, 𝐵, the (min-+)-product 𝐴 ⊙ 𝐵 is

(𝐴 ⊙ 𝐵)[ 𝑖, 𝑘 ] ∶= min
𝑗
(𝐴[ 𝑖, 𝑗 ] + 𝐵[ 𝑗, 𝑘 ])

Lemma (Unit-Monge Monoid) [Tis’07,’15]

For Monge 𝐴, 𝐵, the matrix 𝐴 ⊙ 𝐵 is Monge.
For simple unit-Monge 𝐴, 𝐵, the matrix 𝐴 ⊙ 𝐵 is simple unit-Monge.

For perm matrices 𝐴, 𝐵, define seaweed product 𝐴 �⋅ 𝐵 ∶= (𝐴Σ ⊙ 𝐵Σ)�

𝐴 �⋅ 𝐵 is different from normal perm concat: 𝐼𝑅 = (

0 ⋯ 0 1
| 0 1 0
0 1 0 |
1 0 ⋯ 0

) is a zero
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Monge Matrix × (min,+)-Product

𝐴 is simple: first row and last col are 0; for simple 𝐴 have 𝐴Σ� = 𝐴�Σ = 𝐴

𝐴 is Monge if 𝐴� ≥ 0; 𝐴 is unit-Monge if 𝐴� is a permutation matrix

For matrices 𝐴, 𝐵, the (min-+)-product 𝐴 ⊙ 𝐵 is

(𝐴 ⊙ 𝐵)[ 𝑖, 𝑘 ] ∶= min
𝑗
(𝐴[ 𝑖, 𝑗 ] + 𝐵[ 𝑗, 𝑘 ])

Lemma (Unit-Monge Monoid) [Tis’07,’15]

For Monge 𝐴, 𝐵, the matrix 𝐴 ⊙ 𝐵 is Monge.
For simple unit-Monge 𝐴, 𝐵, the matrix 𝐴 ⊙ 𝐵 is simple unit-Monge.

For perm matrices 𝐴, 𝐵, define seaweed product 𝐴 �⋅ 𝐵 ∶= (𝐴Σ ⊙ 𝐵Σ)�

𝐴 �⋅ 𝐵 is different from normal perm concat: 𝐼𝑅 = (

0 ⋯ 0 1
| 0 1 0
0 1 0 |
1 0 ⋯ 0

) is a zero

Philip Wellnitz
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Monge Matrix × (min,+)-Product—Examples

(
0 1 0
1 0 0
0 0 1

) (
1 0 0
0 0 1
0 1 0

) =

= (

0 0 0 0
1 1 1 0
2 1 1 0
3 2 1 0

)

Philip Wellnitz
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Monge Matrix × (min,+)-Product—Examples
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(⋅)Σ
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(⋅)Σ
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1 0 0 0
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3 2 1 0
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0 0 0 0
1 1 1 0
2 1 1 0
3 2 1 0

)

Philip Wellnitz
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Monge Matrix × (min,+)-Product—Examples
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Monge Matrix × (min,+)-Product—Examples
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Monge Matrix × (min,+)-Product—Examples
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Monge Matrix × (min,+)-Product—Computation

Naive computation: 𝑂(𝑛3) too slow

Philip Wellnitz
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Monge Matrix × (min,+)-Product—Computation

Naive computation: 𝑂(𝑛3) too slow

Theorem (Monge Multiplication) [SMAWK’87]

Can compute (min,+)-product of two 𝑛 × 𝑛 Monge matrices in time �̃�(𝑛2).
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Monge Matrix × (min,+)-Product—Computation

Naive computation: 𝑂(𝑛3) too slow

Theorem (Monge Multiplication) [SMAWK’87]

Can compute (min,+)-product of two 𝑛 × 𝑛 Monge matrices in time �̃�(𝑛2).

(Proof skipped.)

Theorem (Unit Monge Multiplication) [Tis’07,’15]

Can compute (min,+)-product of two 𝑛 × 𝑛 simple unit-Monge matrices in time 𝑂(𝑛 log 𝑛).

Proof idea (details messy, but not too complicated).
Divide and Conquer: Split each matrix into two; reduce to just two subproblems
For conquer step, use elaborate, but easy to compute function to decide which
solution to propagate from subproblem

Philip Wellnitz
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Monge Matrix × (min,+)-Product—Examples, revisited

(
0 1 0
1 0 0
0 0 1

) (
1 0 0
0 0 1
0 1 0

) =

 

(⋅)Σ

(

0 0 0 0
1 1 0 0
2 1 0 0
3 2 1 0

)

 

(⋅)Σ

(

0 0 0 0
1 0 0 0
2 1 1 0
3 2 1 0

) = (

0 0 0 0
1 1 1 0
2 1 1 0
3 2 1 0

)

 (⋅)�

(
0 0 1
1 0 0
0 1 0

)

Philip Wellnitz
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Monge Matrix × (min,+)-Product—Examples, revisited

(
0 1 0
1 0 0
0 0 1

) (
1 0 0
0 0 1
0 1 0

) =

 

(⋅)Σ

(

0 0 0 0
1 1 0 0
2 1 0 0
3 2 1 0

)

 

(⋅)Σ

(

0 0 0 0
1 0 0 0
2 1 1 0
3 2 1 0

) = (

0 0 0 0
1 1 1 0
2 1 1 0
3 2 1 0

)

 (⋅)�

(
0 0 1
1 0 0
0 1 0

)

=

Example matches normal multiplication of permutation matrices.
Philip Wellnitz
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Monge Matrix × (min,+)-Product—Examples, revisited

(
0 1 0
1 0 0
0 0 1

) (
0 0 1
0 1 0
1 0 0

) =

 

(⋅)Σ

(

0 0 0 0
1 1 0 0
2 1 0 0
3 2 1 0

)

 

(⋅)Σ

(

0 0 0 0
1 1 1 0
2 2 1 0
3 2 1 0

) = (

0 0 0 0
1 1 1 0
2 2 1 0
3 2 1 0

)

 (⋅)�

(
0 0 1
0 1 0
1 0 0

)
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Monge Matrix × (min,+)-Product—Examples, revisited
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1 0 0
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(
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3 2 1 0
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2 2 1 0
3 2 1 0
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 (⋅)�

(
0 0 1
0 1 0
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=
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Monge Matrix × (min,+)-Product—Examples, revisited
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Monge Matrix × (min,+)-Product—Examples, revisited
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(⋅)Σ

(
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Monge Matrix × (min,+)-Product—Examples, revisited

(
0 1 0
1 0 0
0 0 1

) (
0 0 1
0 1 0
1 0 0

) =

 

(⋅)Σ

(

0 0 0 0
1 1 0 0
2 1 0 0
3 2 1 0

)

 

(⋅)Σ

(

0 0 0 0
1 1 1 0
2 2 1 0
3 2 1 0

) = (

0 0 0 0
1 1 1 0
2 2 1 0
3 2 1 0

)

 (⋅)�
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0 0 1
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=
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Monge Matrix × (min,+)-Product—Examples, revisited

(
0 1 0
1 0 0
0 0 1

) (
0 0 1
0 1 0
1 0 0

) =

 

(⋅)Σ

(

0 0 0 0
1 1 0 0
2 1 0 0
3 2 1 0

)

 

(⋅)Σ

(

0 0 0 0
1 1 1 0
2 2 1 0
3 2 1 0

) = (

0 0 0 0
1 1 1 0
2 2 1 0
3 2 1 0

)

 (⋅)�

(
0 0 1
0 1 0
1 0 0

)

=
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Monge Matrix × (min,+)-Product—Examples, revisited

(
0 1 0
1 0 0
0 0 1

) (
0 0 1
0 1 0
1 0 0

) =

 

(⋅)Σ

(

0 0 0 0
1 1 0 0
2 1 0 0
3 2 1 0

)

 

(⋅)Σ

(

0 0 0 0
1 1 1 0
2 2 1 0
3 2 1 0

) = (

0 0 0 0
1 1 1 0
2 2 1 0
3 2 1 0

)

 (⋅)�

(
0 0 1
0 1 0
1 0 0

)

=

Can view seaweed product in terms of these diagrams, but need some extra simplification rules.

Philip Wellnitz
From Strings to Seaweeds: Modern Tools for Classical Problems



47-1

Monge Matrix × (min,+)-Product—Examples, revisited
Seaweed Monoid Tis’07,’15

Can characterize monoid (simple unit-Monge, �⋅ ) in terms of seaweed diagrams with
their stitching, when using as generators the elementary seaweeds

{ ⋯ , ⋯ , ⋯ , ⋯ }
and the following relations

⋯ = ⋯ (idempotence for every generator)

=⋯ ⋯

(far commutativity)

=

(braid relation)

Elementary seaweeds are just identity matrix and transposition matrices.
Idempotence is crucial difference from standard perm concat Philip Wellnitz

From Strings to Seaweeds: Modern Tools for Classical Problems



47-2

Monge Matrix × (min,+)-Product—Examples, revisited
Seaweed Monoid Tis’07,’15

Can characterize monoid (simple unit-Monge, �⋅ ) in terms of seaweed diagrams with
their stitching, when using as generators the elementary seaweeds

{ ⋯ , ⋯ , ⋯ , ⋯ }
and the following relations

⋯ = ⋯ (idempotence for every generator)

=⋯ ⋯

(far commutativity)

=

(braid relation)

Elementary seaweeds are just identity matrix and transposition matrices.
Idempotence is crucial difference from standard perm concat Philip Wellnitz

From Strings to Seaweeds: Modern Tools for Classical Problems



47-3

Monge Matrix × (min,+)-Product—Examples, revisited
Seaweed Monoid Tis’07,’15

Can characterize monoid (simple unit-Monge, �⋅ ) in terms of seaweed diagrams with
their stitching, when using as generators the elementary seaweeds

{ ⋯ , ⋯ , ⋯ , ⋯ }
and the following relations

⋯ = ⋯ (idempotence for every generator)

=⋯ ⋯

(far commutativity)

=

(braid relation)

Elementary seaweeds are just identity matrix and transposition matrices.
Idempotence is crucial difference from standard perm concat Philip Wellnitz

From Strings to Seaweeds: Modern Tools for Classical Problems



47-4

Monge Matrix × (min,+)-Product—Examples, revisited
Seaweed Monoid Tis’07,’15

Can characterize monoid (simple unit-Monge, �⋅ ) in terms of seaweed diagrams with
their stitching, when using as generators the elementary seaweeds

{ ⋯ , ⋯ , ⋯ , ⋯ }
and the following relations

⋯ = ⋯ (idempotence for every generator)

=⋯ ⋯

(far commutativity)

=

(braid relation)

Elementary seaweeds are just identity matrix and transposition matrices.
Idempotence is crucial difference from standard perm concat Philip Wellnitz

From Strings to Seaweeds: Modern Tools for Classical Problems



47-5

Monge Matrix × (min,+)-Product—Examples, revisited
Seaweed Monoid Tis’07,’15

Can characterize monoid (simple unit-Monge, �⋅ ) in terms of seaweed diagrams with
their stitching, when using as generators the elementary seaweeds

{ ⋯ , ⋯ , ⋯ , ⋯ }
and the following relations

⋯ = ⋯ (idempotence for every generator)

=⋯ ⋯

(far commutativity)

=

(braid relation)

Elementary seaweeds are just identity matrix and transposition matrices.
Idempotence is crucial difference from standard perm concat Philip Wellnitz

From Strings to Seaweeds: Modern Tools for Classical Problems



48-1

A Final Example: Stitching with 𝐼
Consider following task:
Have permutations (1, … , 𝑛) ↦ (𝜎(1), … , 𝜎(𝑛)) and (1, … , 𝑛) ↦ (𝜚(1), … , 𝜚(𝑛))
Want permutation (1, … , 𝑛, 𝑛 + 1,… , 2𝑛) ↦ (𝜎(1), … , 𝜎(𝑛), 𝜚(1), … , 𝜚(𝑛))
 Prime application: string concatenation
Claim:

𝑃𝜎𝜚 = (
𝑃𝜎 0
0 𝑃𝜚

) = (
𝑃𝜎 0
0 𝐼|𝜚|

) �⋅ (
𝐼|𝜎| 0
0 𝑃𝜚

)

Easy proof via seaweeds:

Philip Wellnitz
From Strings to Seaweeds: Modern Tools for Classical Problems
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Seaweeds in a Nutshell

Somewhat weird matrix product (min-plus product of prefix-sum matrices of
permutation matrices)
Seaweed product can be computed efficiently
 Important special case: stitching with 𝐼 )
Next, and most importantly: can reinterpret the original DP matrix for ED as
prefix-sum matrix of a permutation matrix (after some massaging)

Philip Wellnitz
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Using Seaweeds for Faster ED Computations

Given 𝑃, 𝑇, need to compute ED between arbitrary substrings
 Goal: Use seaweeds for speed-ups over standard DP

DP table 𝑒(𝑖, 𝑗)

𝑒(𝑖, 𝑗) = ED(𝑃[ 0 . . 𝑖 ), 𝑇[ 0 . . 𝑗 ))

naive: 𝑂(|𝑃| ⋅ |𝑇|) computation
kangaroo jumps [LV89]
 time 𝑂(|𝑃| + |𝑇| + 𝑘2) for ED
 time 𝑂((|𝑃| + |𝑇|)𝑘) for APM

 

?

Want to use (min, +)-product
(of matrices stored as perm’s)

 recast ED as shortest path prob?

Philip Wellnitz
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 time 𝑂((|𝑃| + |𝑇|)𝑘) for APM

 

?
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Using Seaweeds for Faster ED Computations

Given 𝑃, 𝑇, need to compute ED between arbitrary substrings
 Goal: Use seaweeds for speed-ups over standard DP

DP table 𝑒(𝑖, 𝑗)

𝑒(𝑖, 𝑗) = ED(𝑃[ 0 . . 𝑖 ), 𝑇[ 0 . . 𝑗 ))

naive: 𝑂(|𝑃| ⋅ |𝑇|) computation
kangaroo jumps [LV89]
 time 𝑂(|𝑃| + |𝑇| + 𝑘2) for ED
 time 𝑂((|𝑃| + |𝑇|)𝑘) for APM

 

?

Want to use (min, +)-product
(of matrices stored as perm’s)

 recast ED as shortest path prob?
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From DP to Alignment Graphs

Recall classical DP (again):
Write 𝑒(𝑖, 𝑗) for the ed of 𝑇[ 0 . . 𝑖 ) and 𝑃[ 0 . . 𝑗 )
 𝑒(𝑡, 𝑝) is the ed of 𝑇 and 𝑃.

Clearly, 𝑒(𝑖, 0) = 𝑖 (delete 𝑇[ 0 . . 𝑖 ))
and 𝑒(0, 𝑗) = 𝑗 (insert 𝑃[ 0 . . 𝑗 ))

Observe

𝑒(𝑖, 𝑗) = min{

𝑒(𝑖 − 1, 𝑗) + 1 (delete from 𝑇)
𝑒(𝑖, 𝑗 − 1) + 1 (insert in 𝑇)
𝑒(𝑖 − 1, 𝑗 − 1)
+(𝑇[ 𝑖 ]≠𝑃[ 𝑗 ]) (match/subst)

s a r r e b r ⋯

s
a
a
r
b
⋮

𝑒(𝑖, 𝑗)

𝑒(𝑡, 𝑝)

s a r r e b r ⋯

0 1 2 3 4 5 6 7
s

1 0 1 2 3 4 5 6
a

2 1 0 1 2 3 4 5
a

3 2 1
r

4
b

5
⋮

Philip Wellnitz
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From DP to Alignment Graphs

Recall classical DP (again):
Write 𝑒(𝑖, 𝑗) for the ed of 𝑇[ 0 . . 𝑖 ) and 𝑃[ 0 . . 𝑗 )
 𝑒(𝑡, 𝑝) is the ed of 𝑇 and 𝑃.

Clearly, 𝑒(𝑖, 0) = 𝑖 (delete 𝑇[ 0 . . 𝑖 ))
and 𝑒(0, 𝑗) = 𝑗 (insert 𝑃[ 0 . . 𝑗 ))

Observe

𝑒(𝑖, 𝑗) = min{

𝑒(𝑖 − 1, 𝑗) + 1 (delete from 𝑇)
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+(𝑇[ 𝑖 ]≠𝑃[ 𝑗 ]) (match/subst)

s a r r e b r ⋯

s
a
a
r
b
⋮

𝑒(𝑖, 𝑗)

𝑒(𝑡, 𝑝)

s a r r e b r ⋯

0 1 2 3 4 5 6 7
s

1 0 1 2 3 4 5 6
a

2 1 0 1 2 3 4 5
a

3 2 1
r

4
b

5
⋮

Consider different,
but related alignment graph:

Vertex (𝑖, 𝑗) for every 𝑖 ∈ [ 0 . . |𝑇| ], 𝑗 ∈ [ 0 . . |𝑃| ]

Horizontal edge (𝑖, 𝑗) → (𝑖 + 1, 𝑗) of weight 1
(deletion from 𝑇 )

Vertical edge (𝑖, 𝑗) → (𝑖, 𝑗 + 1) of weight 1
(insertion in 𝑇 )

Diagonal edge (𝑖, 𝑗) → (𝑖 + 1, 𝑗 + 1)
of weight (𝑇[ 𝑖 ] ≠ 𝑃[ 𝑗 ]) (match/subst)

 shortest (0, 0) to (|𝑇|, |𝑃|) path is ed of 𝑇 and 𝑃

 recover DP by running Dijkstra from (0, 0)

1 or 0

1 1

1

1

a

b

a b c d e f

z

x

w

v

u

o
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From DP to Alignment Graphs

Recall classical DP (again):
Write 𝑒(𝑖, 𝑗) for the ed of 𝑇[ 0 . . 𝑖 ) and 𝑃[ 0 . . 𝑗 )
 𝑒(𝑡, 𝑝) is the ed of 𝑇 and 𝑃.

Clearly, 𝑒(𝑖, 0) = 𝑖 (delete 𝑇[ 0 . . 𝑖 ))
and 𝑒(0, 𝑗) = 𝑗 (insert 𝑃[ 0 . . 𝑗 ))

Observe

𝑒(𝑖, 𝑗) = min{

𝑒(𝑖 − 1, 𝑗) + 1 (delete from 𝑇)
𝑒(𝑖, 𝑗 − 1) + 1 (insert in 𝑇)
𝑒(𝑖 − 1, 𝑗 − 1)
+(𝑇[ 𝑖 ]≠𝑃[ 𝑗 ]) (match/subst)

s a r r e b r ⋯
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r
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⋮

𝑒(𝑖, 𝑗)

𝑒(𝑡, 𝑝)

s a r r e b r ⋯

0 1 2 3 4 5 6 7
s

1 0 1 2 3 4 5 6
a

2 1 0 1 2 3 4 5
a

3 2 1
r

4
b

5
⋮

Consider different,
but related alignment graph:

Vertex (𝑖, 𝑗) for every 𝑖 ∈ [ 0 . . |𝑇| ], 𝑗 ∈ [ 0 . . |𝑃| ]

Horizontal edge (𝑖, 𝑗) → (𝑖 + 1, 𝑗) of weight 1
(deletion from 𝑇 )

Vertical edge (𝑖, 𝑗) → (𝑖, 𝑗 + 1) of weight 1
(insertion in 𝑇 )

Diagonal edge (𝑖, 𝑗) → (𝑖 + 1, 𝑗 + 1)
of weight (𝑇[ 𝑖 ] ≠ 𝑃[ 𝑗 ]) (match/subst)

 shortest (0, 0) to (|𝑇|, |𝑃|) path is ed of 𝑇 and 𝑃

 recover DP by running Dijkstra from (0, 0)

1 or 0

1 1

1
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a b c d e f
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o

Philip Wellnitz
From Strings to Seaweeds: Modern Tools for Classical Problems



51-4

From DP to Alignment Graphs

Recall classical DP (again):
Write 𝑒(𝑖, 𝑗) for the ed of 𝑇[ 0 . . 𝑖 ) and 𝑃[ 0 . . 𝑗 )
 𝑒(𝑡, 𝑝) is the ed of 𝑇 and 𝑃.

Clearly, 𝑒(𝑖, 0) = 𝑖 (delete 𝑇[ 0 . . 𝑖 ))
and 𝑒(0, 𝑗) = 𝑗 (insert 𝑃[ 0 . . 𝑗 ))

Observe

𝑒(𝑖, 𝑗) = min{

𝑒(𝑖 − 1, 𝑗) + 1 (delete from 𝑇)
𝑒(𝑖, 𝑗 − 1) + 1 (insert in 𝑇)
𝑒(𝑖 − 1, 𝑗 − 1)
+(𝑇[ 𝑖 ]≠𝑃[ 𝑗 ]) (match/subst)

s a r r e b r ⋯

s
a
a
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⋮

𝑒(𝑖, 𝑗)

𝑒(𝑡, 𝑝)

s a r r e b r ⋯

0 1 2 3 4 5 6 7
s

1 0 1 2 3 4 5 6
a

2 1 0 1 2 3 4 5
a

3 2 1
r

4
b

5
⋮

Consider different,
but related alignment graph:

Vertex (𝑖, 𝑗) for every 𝑖 ∈ [ 0 . . |𝑇| ], 𝑗 ∈ [ 0 . . |𝑃| ]

Horizontal edge (𝑖, 𝑗) → (𝑖 + 1, 𝑗) of weight 1
(deletion from 𝑇 )

Vertical edge (𝑖, 𝑗) → (𝑖, 𝑗 + 1) of weight 1
(insertion in 𝑇 )

Diagonal edge (𝑖, 𝑗) → (𝑖 + 1, 𝑗 + 1)
of weight (𝑇[ 𝑖 ] ≠ 𝑃[ 𝑗 ]) (match/subst)

 shortest (0, 0) to (|𝑇|, |𝑃|) path is ed of 𝑇 and 𝑃

 recover DP by running Dijkstra from (0, 0)

1 or 0

1 1

1

1

a

b

a b c d e f

z

x

w

v

u

o
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From DP to Alignment Graphs

Alignment Graph of 𝑃 and 𝑇
Vertex (𝑖, 𝑗) for every 𝑖 ∈ [ 0 . . |𝑇| ], 𝑗 ∈ [ 0 . . |𝑃| ]

Horizontal edge (𝑖, 𝑗) → (𝑖 + 1, 𝑗) of weight 1
(deletion from 𝑇 )

Vertical edge (𝑖, 𝑗) → (𝑖, 𝑗 + 1) of weight 1
(insertion in 𝑇 )

Diagonal edge (𝑖, 𝑗) → (𝑖 + 1, 𝑗 + 1)
of weight (𝑇[ 𝑖 ] ≠ 𝑃[ 𝑗 ]) (match/subst)

 shortest (0, 0) to (|𝑇|, |𝑃|) path is ed of 𝑇 and 𝑃

shortest (𝑖, 𝑗) to (𝑖′, 𝑗′) path is ed of
𝑇[ 𝑖 . . 𝑖′ ) and 𝑃[ 𝑗 . . 𝑗′) )

 For stitching: Need (just)
boundary-to-boundary dist’s
Define 𝐷𝑃,𝑇[ 𝑎, 𝑏 ] ∶= dist(in𝑎,out𝑏)

1 or 0

1 1

1

1

a

b

a b c d e f

z

x

w

v

u

o

dist ( (0, 0), (|𝑇|, |𝑃|) ) = ED(𝑇, 𝑃)
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From DP to Alignment Graphs

Alignment Graph of 𝑃 and 𝑇
Vertex (𝑖, 𝑗) for every 𝑖 ∈ [ 0 . . |𝑇| ], 𝑗 ∈ [ 0 . . |𝑃| ]

Horizontal edge (𝑖, 𝑗) → (𝑖 + 1, 𝑗) of weight 1
(deletion from 𝑇 )

Vertical edge (𝑖, 𝑗) → (𝑖, 𝑗 + 1) of weight 1
(insertion in 𝑇 )

Diagonal edge (𝑖, 𝑗) → (𝑖 + 1, 𝑗 + 1)
of weight (𝑇[ 𝑖 ] ≠ 𝑃[ 𝑗 ]) (match/subst)

 shortest (0, 0) to (|𝑇|, |𝑃|) path is ed of 𝑇 and 𝑃

shortest (𝑖, 𝑗) to (𝑖′, 𝑗′) path is ed of
𝑇[ 𝑖 . . 𝑖′ ) and 𝑃[ 𝑗 . . 𝑗′) )

 For stitching: Need (just)
boundary-to-boundary dist’s
Define 𝐷𝑃,𝑇[ 𝑎, 𝑏 ] ∶= dist(in𝑎,out𝑏)

1 or 0

1 1

1

1

a

b

a b c d e f

z

x

w

v

u

o

dist ( (𝑖, 0), (𝑖′, |𝑃|) ) = ED(𝑇[ 𝑖 . . 𝑖′ ), 𝑃)
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From DP to Alignment Graphs

Alignment Graph of 𝑃 and 𝑇
Vertex (𝑖, 𝑗) for every 𝑖 ∈ [ 0 . . |𝑇| ], 𝑗 ∈ [ 0 . . |𝑃| ]

Horizontal edge (𝑖, 𝑗) → (𝑖 + 1, 𝑗) of weight 1
(deletion from 𝑇 )

Vertical edge (𝑖, 𝑗) → (𝑖, 𝑗 + 1) of weight 1
(insertion in 𝑇 )

Diagonal edge (𝑖, 𝑗) → (𝑖 + 1, 𝑗 + 1)
of weight (𝑇[ 𝑖 ] ≠ 𝑃[ 𝑗 ]) (match/subst)

 shortest (0, 0) to (|𝑇|, |𝑃|) path is ed of 𝑇 and 𝑃

shortest (𝑖, 𝑗) to (𝑖′, 𝑗′) path is ed of
𝑇[ 𝑖 . . 𝑖′ ) and 𝑃[ 𝑗 . . 𝑗′) )

 For stitching: Need (just)
boundary-to-boundary dist’s
Define 𝐷𝑃,𝑇[ 𝑎, 𝑏 ] ∶= dist(in𝑎,out𝑏)

1 or 0

1 1

1

1

a

b

a b c d e f

z

x

w

v

u

o

dist ( (𝑖, 𝑗), (𝑖′, 𝑗′) ) = ED(𝑇[ 𝑖 . . 𝑖′ ), 𝑃[ 𝑗 . . 𝑗′ ))
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From DP to Alignment Graphs

Alignment Graph of 𝑃 and 𝑇
Vertex (𝑖, 𝑗) for every 𝑖 ∈ [ 0 . . |𝑇| ], 𝑗 ∈ [ 0 . . |𝑃| ]

Horizontal edge (𝑖, 𝑗) → (𝑖 + 1, 𝑗) of weight 1
(deletion from 𝑇 )

Vertical edge (𝑖, 𝑗) → (𝑖, 𝑗 + 1) of weight 1
(insertion in 𝑇 )

Diagonal edge (𝑖, 𝑗) → (𝑖 + 1, 𝑗 + 1)
of weight (𝑇[ 𝑖 ] ≠ 𝑃[ 𝑗 ]) (match/subst)

 shortest (0, 0) to (|𝑇|, |𝑃|) path is ed of 𝑇 and 𝑃

shortest (𝑖, 𝑗) to (𝑖′, 𝑗′) path is ed of
𝑇[ 𝑖 . . 𝑖′ ) and 𝑃[ 𝑗 . . 𝑗′) )

 For stitching: Need (just)
boundary-to-boundary dist’s
Define 𝐷𝑃,𝑇[ 𝑎, 𝑏 ] ∶= dist(in𝑎,out𝑏)

1 or 0
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10
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0
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4
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out
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out
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6

dist ( in𝑎,out𝑏 ) = ED(𝑇[max(𝑎 − |𝑃|, 0) . . min(𝑏, |𝑇|) ),
𝑃[max(|𝑃| − 𝑎, 0) . . min(|𝑃| + |𝑇| − 𝑏, |𝑃|) ))
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From DP to Alignment Graphs

Alignment Graph of 𝑃 and 𝑇
Vertex (𝑖, 𝑗) for every 𝑖 ∈ [ 0 . . |𝑇| ], 𝑗 ∈ [ 0 . . |𝑃| ]

Horizontal edge (𝑖, 𝑗) → (𝑖 + 1, 𝑗) of weight 1
(deletion from 𝑇 )

Vertical edge (𝑖, 𝑗) → (𝑖, 𝑗 + 1) of weight 1
(insertion in 𝑇 )

Diagonal edge (𝑖, 𝑗) → (𝑖 + 1, 𝑗 + 1)
of weight (𝑇[ 𝑖 ] ≠ 𝑃[ 𝑗 ]) (match/subst)

 shortest (0, 0) to (|𝑇|, |𝑃|) path is ed of 𝑇 and 𝑃

shortest (𝑖, 𝑗) to (𝑖′, 𝑗′) path is ed of
𝑇[ 𝑖 . . 𝑖′ ) and 𝑃[ 𝑗 . . 𝑗′) )

 For stitching: Need (just)
boundary-to-boundary dist’s
Define 𝐷𝑃,𝑇[ 𝑎, 𝑏 ] ∶= dist(in𝑎,out𝑏)
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dist ( in𝑎,out𝑏 ) = ED(𝑇[max(𝑎 − |𝑃|, 0) . . min(𝑏, |𝑇|) ),
𝑃[max(|𝑃| − 𝑎, 0) . . min(|𝑃| + |𝑇| − 𝑏, |𝑃|) ))
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From DP to Alignment Graphs

Consider Alignment Graph of 𝑃 and 𝑇
Define 𝐷𝑃,𝑇[ 𝑎, 𝑏 ] ∶= dist(in𝑎,out𝑏)

 Hope: 𝐷�𝑃,𝑇 is permutation matrix
Problem: Some 𝐷𝑃,𝑇[ 𝑎, 𝑏 ] are∞
 use undirected edges
Suffices to show (recall earlier slide):

𝐷𝑃,𝑇 is non-negative and integer
Border satisfies (𝑛 ∶= |𝑃| + |𝑇|)

𝐷𝑃,𝑇
!= ⎛⎜

⎝

0 0 ⋯ 0 0
1 0
⋯ ⋯

𝑛 − 1 0
𝑛 𝑛 − 1 ⋯ 1 0

⎞⎟

⎠

𝐷𝑃,𝑇[ 𝑎, 0 ] = 0 𝐷𝑃,𝑇[ 𝑎, 𝑛 ] = 𝑛 − 𝑎
𝐷𝑃,𝑇[ 𝑛, 𝑏 ] = 0 𝐷𝑃,𝑇[ 0, 𝑏 ] = 𝑏

Idea: Force boundary values to be correct
 𝐷′𝑃,𝑇[ 𝑎, 𝑏 ] ∶= (𝐷𝑃,𝑇[ 𝑎, 𝑏 ] − 𝑎 + 𝑏)/2

1 or 0
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dist ( in𝑎,out𝑏 ) = ED(𝑇[max(𝑎 − |𝑃|, 0) . . min(𝑏, |𝑇|) ),
𝑃[max(|𝑃| − 𝑎, 0) . . min(|𝑃| + |𝑇| − 𝑏, |𝑃|) ))
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From DP to Alignment Graphs

Consider Alignment Graph of 𝑃 and 𝑇
Define 𝐷𝑃,𝑇[ 𝑎, 𝑏 ] ∶= dist(in𝑎,out𝑏)

 Hope: 𝐷�𝑃,𝑇 is permutation matrix
Problem: Some 𝐷𝑃,𝑇[ 𝑎, 𝑏 ] are∞
 use undirected edges
Suffices to show (recall earlier slide):

𝐷𝑃,𝑇 is non-negative and integer
Border satisfies (𝑛 ∶= |𝑃| + |𝑇|)

𝐷𝑃,𝑇
!= ⎛⎜

⎝

0 0 ⋯ 0 0
1 0
⋯ ⋯

𝑛 − 1 0
𝑛 𝑛 − 1 ⋯ 1 0

⎞⎟

⎠

𝐷𝑃,𝑇[ 𝑎, 0 ] = 0 𝐷𝑃,𝑇[ 𝑎, 𝑛 ] = 𝑛 − 𝑎
𝐷𝑃,𝑇[ 𝑛, 𝑏 ] = 0 𝐷𝑃,𝑇[ 0, 𝑏 ] = 𝑏

Idea: Force boundary values to be correct
 𝐷′𝑃,𝑇[ 𝑎, 𝑏 ] ∶= (𝐷𝑃,𝑇[ 𝑎, 𝑏 ] − 𝑎 + 𝑏)/2
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dist ( in𝑎,out𝑏 ) = ED(𝑇[max(𝑎 − |𝑃|, 0) . . min(𝑏, |𝑇|) ),
𝑃[max(|𝑃| − 𝑎, 0) . . min(|𝑃| + |𝑇| − 𝑏, |𝑃|) ))
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From DP to Alignment Graphs

Consider Alignment Graph of 𝑃 and 𝑇
Define 𝐷𝑃,𝑇[ 𝑎, 𝑏 ] ∶= dist(in𝑎,out𝑏)

 Hope: 𝐷�𝑃,𝑇 is permutation matrix
Problem: Some 𝐷𝑃,𝑇[ 𝑎, 𝑏 ] are∞
 use undirected edges
Suffices to show (recall earlier slide):

𝐷𝑃,𝑇 is non-negative and integer
Border satisfies (𝑛 ∶= |𝑃| + |𝑇|)

𝐷𝑃,𝑇
!= ⎛⎜

⎝

0 0 ⋯ 0 0
1 0
⋯ ⋯

𝑛 − 1 0
𝑛 𝑛 − 1 ⋯ 1 0

⎞⎟

⎠

𝐷𝑃,𝑇[ 𝑎, 0 ] = 0 𝐷𝑃,𝑇[ 𝑎, 𝑛 ] = 𝑛 − 𝑎
𝐷𝑃,𝑇[ 𝑛, 𝑏 ] = 0 𝐷𝑃,𝑇[ 0, 𝑏 ] = 𝑏

Idea: Force boundary values to be correct
 𝐷′𝑃,𝑇[ 𝑎, 𝑏 ] ∶= (𝐷𝑃,𝑇[ 𝑎, 𝑏 ] − 𝑎 + 𝑏)/2
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dist ( in𝑎,out𝑏 )
∗= ED(𝑇[max(𝑎 − |𝑃|, 0) . . min(𝑏, |𝑇|) ),

𝑃[max(|𝑃| − 𝑎, 0) . . min(|𝑃| + |𝑇| − 𝑏, |𝑃|) ))
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From DP to Alignment Graphs

Consider Alignment Graph of 𝑃 and 𝑇
Define 𝐷𝑃,𝑇[ 𝑎, 𝑏 ] ∶= dist(in𝑎,out𝑏)
Problem: Some 𝐷𝑃,𝑇[ 𝑎, 𝑏 ] are∞
 use undirected edges

 Hope: 𝐷�𝑃,𝑇 is permutation matrix
Suffices to show (recall earlier slide):

𝐷𝑃,𝑇 is non-negative and integer
Border satisfies (𝑛 ∶= |𝑃| + |𝑇|)

𝐷𝑃,𝑇
!= ⎛⎜

⎝

0 0 ⋯ 0 0
1 0
⋯ ⋯

𝑛 − 1 0
𝑛 𝑛 − 1 ⋯ 1 0

⎞⎟

⎠

𝐷𝑃,𝑇[ 𝑎, 0 ] = 0 𝐷𝑃,𝑇[ 𝑎, 𝑛 ] = 𝑛 − 𝑎
𝐷𝑃,𝑇[ 𝑛, 𝑏 ] = 0 𝐷𝑃,𝑇[ 0, 𝑏 ] = 𝑏

Idea: Force boundary values to be correct
 𝐷′𝑃,𝑇[ 𝑎, 𝑏 ] ∶= (𝐷𝑃,𝑇[ 𝑎, 𝑏 ] − 𝑎 + 𝑏)/2
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dist ( in𝑎,out𝑏 )
∗= ED(𝑇[max(𝑎 − |𝑃|, 0) . . min(𝑏, |𝑇|) ),

𝑃[max(|𝑃| − 𝑎, 0) . . min(|𝑃| + |𝑇| − 𝑏, |𝑃|) ))
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From DP to Alignment Graphs

Consider Alignment Graph of 𝑃 and 𝑇
Define 𝐷𝑃,𝑇[ 𝑎, 𝑏 ] ∶= dist(in𝑎,out𝑏)
Problem: Some 𝐷𝑃,𝑇[ 𝑎, 𝑏 ] are∞
 use undirected edges

 Hope: 𝐷�𝑃,𝑇 is permutation matrix
Suffices to show (recall earlier slide):

𝐷𝑃,𝑇 is non-negative and integer
Border satisfies (𝑛 ∶= |𝑃| + |𝑇|)

𝐷𝑃,𝑇
!= ⎛⎜

⎝

0 0 ⋯ 0 0
1 0
⋯ ⋯

𝑛 − 1 0
𝑛 𝑛 − 1 ⋯ 1 0

⎞⎟

⎠

𝐷𝑃,𝑇[ 𝑎, 0 ] = 0 𝐷𝑃,𝑇[ 𝑎, 𝑛 ] = 𝑛 − 𝑎
𝐷𝑃,𝑇[ 𝑛, 𝑏 ] = 0 𝐷𝑃,𝑇[ 0, 𝑏 ] = 𝑏

Idea: Force boundary values to be correct
 𝐷′𝑃,𝑇[ 𝑎, 𝑏 ] ∶= (𝐷𝑃,𝑇[ 𝑎, 𝑏 ] − 𝑎 + 𝑏)/2
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dist ( in𝑎,out𝑏 )
∗= ED(𝑇[max(𝑎 − |𝑃|, 0) . . min(𝑏, |𝑇|) ),

𝑃[max(|𝑃| − 𝑎, 0) . . min(|𝑃| + |𝑇| − 𝑏, |𝑃|) ))
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From DP to Alignment Graphs

Consider Alignment Graph of 𝑃 and 𝑇
Define 𝐷𝑃,𝑇[ 𝑎, 𝑏 ] ∶= dist(in𝑎,out𝑏)
Problem: Some 𝐷𝑃,𝑇[ 𝑎, 𝑏 ] are∞
 use undirected edges

 Hope: 𝐷�𝑃,𝑇 is permutation matrix
Suffices to show (recall earlier slide):

𝐷𝑃,𝑇 is non-negative and integer
Border satisfies (𝑛 ∶= |𝑃| + |𝑇|)

𝐷𝑃,𝑇
!= ⎛⎜

⎝

0 0 ⋯ 0 0
1 0
⋯ ⋯

𝑛 − 1 0
𝑛 𝑛 − 1 ⋯ 1 0

⎞⎟

⎠

𝐷𝑃,𝑇[ 𝑎, 0 ] = 0 𝐷𝑃,𝑇[ 𝑎, 𝑛 ] = 𝑛 − 𝑎
𝐷𝑃,𝑇[ 𝑛, 𝑏 ] = 0 𝐷𝑃,𝑇[ 0, 𝑏 ] = 𝑏

Idea: Force boundary values to be correct
 𝐷′𝑃,𝑇[ 𝑎, 𝑏 ] ∶= (𝐷𝑃,𝑇[ 𝑎, 𝑏 ] − 𝑎 + 𝑏)/2
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dist ( in𝑎,out𝑏 )
∗= ED(𝑇[max(𝑎 − |𝑃|, 0) . . min(𝑏, |𝑇|) ),

𝑃[max(|𝑃| − 𝑎, 0) . . min(|𝑃| + |𝑇| − 𝑏, |𝑃|) ))
Philip Wellnitz

From Strings to Seaweeds: Modern Tools for Classical Problems



53-7

From DP to Alignment Graphs

Consider Alignment Graph of 𝑃 and 𝑇
Define 𝐷𝑃,𝑇[ 𝑎, 𝑏 ] ∶= dist(in𝑎,out𝑏)
Problem: Some 𝐷𝑃,𝑇[ 𝑎, 𝑏 ] are∞
 use undirected edges

 Hope: 𝐷�𝑃,𝑇 is permutation matrix
Suffices to show (recall earlier slide):

𝐷𝑃,𝑇 is non-negative and integer
Border satisfies (𝑛 ∶= |𝑃| + |𝑇|)

𝐷𝑃,𝑇
!= ⎛⎜

⎝

0 0 ⋯ 0 0
1 0
⋯ ⋯

𝑛 − 1 0
𝑛 𝑛 − 1 ⋯ 1 0

⎞⎟

⎠

𝐷𝑃,𝑇[ 𝑎, 0 ] = 0 𝐷𝑃,𝑇[ 𝑎, 𝑛 ] = 𝑛 − 𝑎
𝐷𝑃,𝑇[ 𝑛, 𝑏 ] = 0 𝐷𝑃,𝑇[ 0, 𝑏 ] = 𝑏

Idea: Force boundary values to be correct
 𝐷′𝑃,𝑇[ 𝑎, 𝑏 ] ∶= (𝐷𝑃,𝑇[ 𝑎, 𝑏 ] − 𝑎 + 𝑏)/2
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dist ( in𝑎,out𝑏 )
∗= ED(𝑇[max(𝑎 − |𝑃|, 0) . . min(𝑏, |𝑇|) ),

𝑃[max(|𝑃| − 𝑎, 0) . . min(|𝑃| + |𝑇| − 𝑏, |𝑃|) ))
Philip Wellnitz
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From DP to Alignment Graphs

Consider Alignment Graph of 𝑃 and 𝑇
Define 𝐷𝑃,𝑇[ 𝑎, 𝑏 ] ∶= dist(in𝑎,out𝑏)
Problem: Some 𝐷𝑃,𝑇[ 𝑎, 𝑏 ] are∞
 use undirected edges

 Hope: 𝐷�𝑃,𝑇 is permutation matrix
Suffices to show (recall earlier slide):

𝐷𝑃,𝑇 is non-negative and integer
Border satisfies (𝑛 ∶= |𝑃| + |𝑇|)

𝐷𝑃,𝑇
!= ⎛⎜

⎝

0 0 ⋯ 0 0
1 0
⋯ ⋯

𝑛 − 1 0
𝑛 𝑛 − 1 ⋯ 1 0

⎞⎟

⎠

𝐷𝑃,𝑇[ 𝑎, 0 ] = 0 𝐷𝑃,𝑇[ 𝑎, 𝑛 ] = 𝑛 − 𝑎
𝐷𝑃,𝑇[ 𝑛, 𝑏 ] = 0 𝐷𝑃,𝑇[ 0, 𝑏 ] = 𝑏

Idea: Force boundary values to be correct
 𝐷′𝑃,𝑇[ 𝑎, 𝑏 ] ∶= (𝐷𝑃,𝑇[ 𝑎, 𝑏 ] − 𝑎 + 𝑏)/2

1 or 0

1 1

1

1

a

b

in
7

out
7

in
8

out
8

in
9

out
9

in
10

out
10

in
11

out
11

in
12

out
12

out
0

in
0

out
1

in
1

out
2

in
2

out
3

in
3

out
4

in
4

out
5

in
5

out
6

in
6

dist ( in𝑎,out0 )
∗= ED(𝑇[max(𝑎 − |𝑃|, 0) . . 0 ),

𝑃[max(|𝑃| − 𝑎, 0) . . |𝑃| ))
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From DP to Alignment Graphs

Consider Alignment Graph of 𝑃 and 𝑇
Define 𝐷𝑃,𝑇[ 𝑎, 𝑏 ] ∶= dist(in𝑎,out𝑏)
Problem: Some 𝐷𝑃,𝑇[ 𝑎, 𝑏 ] are∞
 use undirected edges

 Hope: 𝐷�𝑃,𝑇 is permutation matrix
Suffices to show (recall earlier slide):

𝐷𝑃,𝑇 is non-negative and integer
Border satisfies (𝑛 ∶= |𝑃| + |𝑇|)

𝐷𝑃,𝑇
!= ⎛⎜

⎝

0 0 ⋯ 0 0
1 0
⋯ ⋯

𝑛 − 1 0
𝑛 𝑛 − 1 ⋯ 1 0

⎞⎟

⎠

𝐷𝑃,𝑇[ 𝑎, 0 ] = 0 𝐷𝑃,𝑇[ 𝑎, 𝑛 ] = 𝑛 − 𝑎
𝐷𝑃,𝑇[ 𝑛, 𝑏 ] = 0 𝐷𝑃,𝑇[ 0, 𝑏 ] = 𝑏

Idea: Force boundary values to be correct
 𝐷′𝑃,𝑇[ 𝑎, 𝑏 ] ∶= (𝐷𝑃,𝑇[ 𝑎, 𝑏 ] − 𝑎 + 𝑏)/2
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dist ( in𝑎,out0 ) = ED(𝜀, 𝑃[max(|𝑃| − 𝑎, 0) . . |𝑃| )) = 𝑎
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From DP to Alignment Graphs

Consider Alignment Graph of 𝑃 and 𝑇
Define 𝐷𝑃,𝑇[ 𝑎, 𝑏 ] ∶= dist(in𝑎,out𝑏)
Problem: Some 𝐷𝑃,𝑇[ 𝑎, 𝑏 ] are∞
 use undirected edges

 Hope: 𝐷�𝑃,𝑇 is permutation matrix
Suffices to show (recall earlier slide):

𝐷𝑃,𝑇 is non-negative and integer
Border satisfies (𝑛 ∶= |𝑃| + |𝑇|)

𝐷𝑃,𝑇
!= ⎛⎜

⎝

0 0 ⋯ 0 0
1 0
⋯ ⋯

𝑛 − 1 0
𝑛 𝑛 − 1 ⋯ 1 0

⎞⎟

⎠

𝐷𝑃,𝑇[ 𝑎, 0 ] = 0= 𝑎 𝐷𝑃,𝑇[ 𝑎, 𝑛 ] = 𝑛 − 𝑎
𝐷𝑃,𝑇[ 𝑛, 𝑏 ] = 0 𝐷𝑃,𝑇[ 0, 𝑏 ] = 𝑏

Idea: Force boundary values to be correct
 𝐷′𝑃,𝑇[ 𝑎, 𝑏 ] ∶= (𝐷𝑃,𝑇[ 𝑎, 𝑏 ] − 𝑎 + 𝑏)/2
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dist ( in𝑎,out0 ) = 𝑎
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From DP to Alignment Graphs

Consider Alignment Graph of 𝑃 and 𝑇
Define 𝐷𝑃,𝑇[ 𝑎, 𝑏 ] ∶= dist(in𝑎,out𝑏)
Problem: Some 𝐷𝑃,𝑇[ 𝑎, 𝑏 ] are∞
 use undirected edges

 Hope: 𝐷�𝑃,𝑇 is permutation matrix
Suffices to show (recall earlier slide):

𝐷𝑃,𝑇 is non-negative and integer
Border satisfies (𝑛 ∶= |𝑃| + |𝑇|)

𝐷𝑃,𝑇
!= ⎛⎜

⎝

0 0 ⋯ 0 0
1 0
⋯ ⋯

𝑛 − 1 0
𝑛 𝑛 − 1 ⋯ 1 0

⎞⎟

⎠

𝐷𝑃,𝑇[ 𝑎, 0 ] = 0= 𝑎 𝐷𝑃,𝑇[ 𝑎, 𝑛 ] = 𝑛 − 𝑎
𝐷𝑃,𝑇[ 𝑛, 𝑏 ] = 0 𝐷𝑃,𝑇[ 0, 𝑏 ] = 𝑏

Idea: Force boundary values to be correct
 𝐷′𝑃,𝑇[ 𝑎, 𝑏 ] ∶= (𝐷𝑃,𝑇[ 𝑎, 𝑏 ] − 𝑎 + 𝑏)/2
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dist ( in𝑎,out𝑛 ) = 𝑛 − 𝑎

Philip Wellnitz
From Strings to Seaweeds: Modern Tools for Classical Problems



53-12

From DP to Alignment Graphs

Consider Alignment Graph of 𝑃 and 𝑇
Define 𝐷𝑃,𝑇[ 𝑎, 𝑏 ] ∶= dist(in𝑎,out𝑏)
Problem: Some 𝐷𝑃,𝑇[ 𝑎, 𝑏 ] are∞
 use undirected edges

 Hope: 𝐷�𝑃,𝑇 is permutation matrix
Suffices to show (recall earlier slide):

𝐷𝑃,𝑇 is non-negative and integer
Border satisfies (𝑛 ∶= |𝑃| + |𝑇|)

𝐷𝑃,𝑇
!= ⎛⎜

⎝

0 0 ⋯ 0 0
1 0
⋯ ⋯

𝑛 − 1 0
𝑛 𝑛 − 1 ⋯ 1 0

⎞⎟

⎠

𝐷𝑃,𝑇[ 𝑎, 0 ] = 0= 𝑎 𝐷𝑃,𝑇[ 𝑎, 𝑛 ] = 𝑛 − 𝑎
𝐷𝑃,𝑇[ 𝑛, 𝑏 ] = 0 𝐷𝑃,𝑇[ 0, 𝑏 ] = 𝑏

Idea: Force boundary values to be correct
 𝐷′𝑃,𝑇[ 𝑎, 𝑏 ] ∶= (𝐷𝑃,𝑇[ 𝑎, 𝑏 ] − 𝑎 + 𝑏)/2
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dist ( in𝑎,out𝑛 ) = 𝑛 − 𝑎
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From DP to Alignment Graphs

Consider Alignment Graph of 𝑃 and 𝑇
Define 𝐷𝑃,𝑇[ 𝑎, 𝑏 ] ∶= dist(in𝑎,out𝑏)
Problem: Some 𝐷𝑃,𝑇[ 𝑎, 𝑏 ] are∞
 use undirected edges

 Hope: 𝐷�𝑃,𝑇 is permutation matrix
Suffices to show (recall earlier slide):

𝐷𝑃,𝑇 is non-negative and integer
Border satisfies (𝑛 ∶= |𝑃| + |𝑇|)

𝐷𝑃,𝑇
!= ⎛⎜

⎝

0 0 ⋯ 0 0
1 0
⋯ ⋯

𝑛 − 1 0
𝑛 𝑛 − 1 ⋯ 1 0

⎞⎟

⎠

𝐷𝑃,𝑇[ 𝑎, 0 ] = 0= 𝑎 𝐷𝑃,𝑇[ 𝑎, 𝑛 ] = 𝑛 − 𝑎
𝐷𝑃,𝑇[ 𝑛, 𝑏 ] =0= 𝑛−𝑏 𝐷𝑃,𝑇[ 0, 𝑏 ] = 𝑏

Idea: Force boundary values to be correct
 𝐷′𝑃,𝑇[ 𝑎, 𝑏 ] ∶= (𝐷𝑃,𝑇[ 𝑎, 𝑏 ] − 𝑎 + 𝑏)/2

1 or 0
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dist ( in𝑛,out𝑏 ) = 𝑛 − 𝑏
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From DP to Alignment Graphs

Consider Alignment Graph of 𝑃 and 𝑇
Define 𝐷𝑃,𝑇[ 𝑎, 𝑏 ] ∶= dist(in𝑎,out𝑏)
Problem: Some 𝐷𝑃,𝑇[ 𝑎, 𝑏 ] are∞
 use undirected edges

 Hope: 𝐷�𝑃,𝑇 is permutation matrix
Suffices to show (recall earlier slide):

𝐷𝑃,𝑇 is non-negative and integer
Border satisfies (𝑛 ∶= |𝑃| + |𝑇|)

𝐷𝑃,𝑇
!= ⎛⎜

⎝

0 0 ⋯ 0 0
1 0
⋯ ⋯

𝑛 − 1 0
𝑛 𝑛 − 1 ⋯ 1 0

⎞⎟

⎠

𝐷𝑃,𝑇[ 𝑎, 0 ] = 0= 𝑎 𝐷𝑃,𝑇[ 𝑎, 𝑛 ] = 𝑛 − 𝑎
𝐷𝑃,𝑇[ 𝑛, 𝑏 ] =0= 𝑛−𝑏 𝐷𝑃,𝑇[ 0, 𝑏 ] = 𝑏

Idea: Force boundary values to be correct
 𝐷′𝑃,𝑇[ 𝑎, 𝑏 ] ∶= (𝐷𝑃,𝑇[ 𝑎, 𝑏 ] − 𝑎 + 𝑏)/2

1 or 0

1 1
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dist ( in0,out𝑏 ) = 𝑏
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From DP to Alignment Graphs

Consider Alignment Graph of 𝑃 and 𝑇
Define 𝐷𝑃,𝑇[ 𝑎, 𝑏 ] ∶= dist(in𝑎,out𝑏)
Problem: Some 𝐷𝑃,𝑇[ 𝑎, 𝑏 ] are∞
 use undirected edges

 Hope: 𝐷�𝑃,𝑇 is permutation matrix
Suffices to show (recall earlier slide):

𝐷𝑃,𝑇 is non-negative and integer
Border satisfies (𝑛 ∶= |𝑃| + |𝑇|)

𝐷𝑃,𝑇
!= ⎛⎜

⎝

0 0 ⋯ 0 0
1 0
⋯ ⋯

𝑛 − 1 0
𝑛 𝑛 − 1 ⋯ 1 0

⎞⎟

⎠

𝐷𝑃,𝑇[ 𝑎, 0 ] = 0= 𝑎 𝐷𝑃,𝑇[ 𝑎, 𝑛 ] = 𝑛 − 𝑎
𝐷𝑃,𝑇[ 𝑛, 𝑏 ] =0= 𝑛−𝑏 𝐷𝑃,𝑇[ 0, 𝑏 ] = 𝑏

Idea: Force boundary values to be correct
 𝐷′𝑃,𝑇[ 𝑎, 𝑏 ] ∶= (𝐷𝑃,𝑇[ 𝑎, 𝑏 ] − 𝑎 + 𝑏)/2

1 or 0

1 1
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b
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4
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6

dist ( in𝑎,out𝑏 )
∗= ED(𝑇[max(𝑎 − |𝑃|, 0) . . min(𝑏, |𝑇|) ),

𝑃[max(|𝑃| − 𝑎, 0) . . min(|𝑃| + |𝑇| − 𝑏, |𝑃|) ))
Philip Wellnitz
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From DP to Alignment Graphs

Consider Alignment Graph of 𝑃 and 𝑇
Define 𝐷𝑃,𝑇[ 𝑎, 𝑏 ] ∶= dist(in𝑎,out𝑏) and 𝐷′𝑃,𝑇[ 𝑎, 𝑏 ] ∶= (𝐷𝑃,𝑇[ 𝑎, 𝑏 ] − 𝑎 + 𝑏)/2

 Hope: 𝐷′�𝑃,𝑇 is permutation matrix
Suffices to show (recall earlier slide):

𝐷′𝑃,𝑇 is non-negative and integer
Border satisfies (𝑛 ∶= |𝑃| + |𝑇|)

𝐷′𝑃,𝑇
!= ⎛⎜

⎝

0 0 ⋯ 0 0
1 0
⋯ ⋯

𝑛 − 1 0
𝑛 𝑛 − 1 ⋯ 1 0

⎞⎟

⎠

Have:
𝐷′𝑃,𝑇[ 𝑎, 0 ] = (𝑎 − 𝑎 + 0)/2 = 0 𝐷′𝑃,𝑇[ 𝑎, 𝑛 ] = ((𝑛 − 𝑎) − 𝑎 + 𝑛)/2 = 𝑛 − 𝑎
𝐷′𝑃,𝑇[ 𝑛, 𝑏 ] = ((𝑛 − 𝑏) − 𝑛 + 𝑏)/2 = 0 𝐷′𝑃,𝑇[ 0, 𝑏 ] = (𝑏 − 0 + 𝑏)/2 = 𝑏

Philip Wellnitz
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From DP to Alignment Graphs

Consider Alignment Graph of 𝑃 and 𝑇
Define 𝐷𝑃,𝑇[ 𝑎, 𝑏 ] ∶= dist(in𝑎,out𝑏) and 𝐷′𝑃,𝑇[ 𝑎, 𝑏 ] ∶= (𝐷𝑃,𝑇[ 𝑎, 𝑏 ] − 𝑎 + 𝑏)/2

 Hope: 𝐷′�𝑃,𝑇 is permutation matrix
Suffices to show (recall earlier slide):

𝐷′𝑃,𝑇 is non-negative and integer
Border satisfies (𝑛 ∶= |𝑃| + |𝑇|)

𝐷′𝑃,𝑇
!= ⎛⎜

⎝

0 0 ⋯ 0 0
1 0
⋯ ⋯

𝑛 − 1 0
𝑛 𝑛 − 1 ⋯ 1 0

⎞⎟

⎠

Have:
𝐷′𝑃,𝑇[ 𝑎, 0 ] = (𝑎 − 𝑎 + 0)/2 = 0 𝐷′𝑃,𝑇[ 𝑎, 𝑛 ] = ((𝑛 − 𝑎) − 𝑎 + 𝑛)/2 = 𝑛 − 𝑎
𝐷′𝑃,𝑇[ 𝑛, 𝑏 ] = ((𝑛 − 𝑏) − 𝑛 + 𝑏)/2 = 0 𝐷′𝑃,𝑇[ 0, 𝑏 ] = (𝑏 − 0 + 𝑏)/2 = 𝑏

Philip Wellnitz
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From DP to Alignment Graphs

Consider Alignment Graph of 𝑃 and 𝑇
Define 𝐷𝑃,𝑇[ 𝑎, 𝑏 ] ∶= dist(in𝑎,out𝑏) and 𝐷′𝑃,𝑇[ 𝑎, 𝑏 ] ∶= (𝐷𝑃,𝑇[ 𝑎, 𝑏 ] − 𝑎 + 𝑏)/2

 Hope: 𝐷′�𝑃,𝑇 is permutation matrix
Suffices to show (recall earlier slide):

𝐷′𝑃,𝑇 is non-negative and integer
Border satisfies (𝑛 ∶= |𝑃| + |𝑇|)

𝐷′𝑃,𝑇
!= ⎛⎜

⎝

0 0 ⋯ 0 0
1 0
⋯ ⋯

𝑛 − 1 0
𝑛 𝑛 − 1 ⋯ 1 0

⎞⎟

⎠

Have:
𝐷′𝑃,𝑇[ 𝑎, 0 ] = (𝑎 − 𝑎 + 0)/2 = 0 𝐷′𝑃,𝑇[ 𝑎, 𝑛 ] = ((𝑛 − 𝑎) − 𝑎 + 𝑛)/2 = 𝑛 − 𝑎
𝐷′𝑃,𝑇[ 𝑛, 𝑏 ] = ((𝑛 − 𝑏) − 𝑛 + 𝑏)/2 = 0 𝐷′𝑃,𝑇[ 0, 𝑏 ] = (𝑏 − 0 + 𝑏)/2 = 𝑏

Philip Wellnitz
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From DP to Alignment Graphs

Consider Alignment Graph of 𝑃 and 𝑇
Define 𝐷𝑃,𝑇[ 𝑎, 𝑏 ] ∶= dist(in𝑎,out𝑏) and 𝐷′𝑃,𝑇[ 𝑎, 𝑏 ] ∶= (𝐷𝑃,𝑇[ 𝑎, 𝑏 ] − 𝑎 + 𝑏)/2

 Hope: 𝐷′�𝑃,𝑇 is permutation matrix
Suffices to show (recall earlier slide):

𝐷′𝑃,𝑇 is non-negative and integer
Border satisfies (𝑛 ∶= |𝑃| + |𝑇|)

𝐷′𝑃,𝑇
!= ⎛⎜

⎝

0 0 ⋯ 0 0
1 0
⋯ ⋯

𝑛 − 1 0
𝑛 𝑛 − 1 ⋯ 1 0

⎞⎟

⎠

Have:
𝐷′𝑃,𝑇[ 𝑎, 0 ] = (𝑎 − 𝑎 + 0)/2 = 0 𝐷′𝑃,𝑇[ 𝑎, 𝑛 ] = ((𝑛 − 𝑎) − 𝑎 + 𝑛)/2 = 𝑛 − 𝑎
𝐷′𝑃,𝑇[ 𝑛, 𝑏 ] = ((𝑛 − 𝑏) − 𝑛 + 𝑏)/2 = 0 𝐷′𝑃,𝑇[ 0, 𝑏 ] = (𝑏 − 0 + 𝑏)/2 = 𝑏

Philip Wellnitz
From Strings to Seaweeds: Modern Tools for Classical Problems



54-5

From DP to Alignment Graphs

Consider Alignment Graph of 𝑃 and 𝑇
Define 𝐷𝑃,𝑇[ 𝑎, 𝑏 ] ∶= dist(in𝑎,out𝑏) and 𝐷′𝑃,𝑇[ 𝑎, 𝑏 ] ∶= (𝐷𝑃,𝑇[ 𝑎, 𝑏 ] − 𝑎 + 𝑏)/2

 Hope: 𝐷′�𝑃,𝑇 is permutation matrix
Suffices to show (recall earlier slide):

𝐷′𝑃,𝑇 is non-negative and integer Problem!
Border satisfies (𝑛 ∶= |𝑃| + |𝑇|)

𝐷′𝑃,𝑇
!= ⎛⎜

⎝

0 0 ⋯ 0 0
1 0
⋯ ⋯

𝑛 − 1 0
𝑛 𝑛 − 1 ⋯ 1 0

⎞⎟

⎠

Have:
𝐷′𝑃,𝑇[ 𝑎, 0 ] = (𝑎 − 𝑎 + 0)/2 = 0 𝐷′𝑃,𝑇[ 𝑎, 𝑛 ] = ((𝑛 − 𝑎) − 𝑎 + 𝑛)/2 = 𝑛 − 𝑎
𝐷′𝑃,𝑇[ 𝑛, 𝑏 ] = ((𝑛 − 𝑏) − 𝑛 + 𝑏)/2 = 0 𝐷′𝑃,𝑇[ 0, 𝑏 ] = (𝑏 − 0 + 𝑏)/2 = 𝑏

Philip Wellnitz
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Substitutions Are Too Cheap!

Define 𝐷𝑃,𝑇[ 𝑎, 𝑏 ] ∶= dist(in𝑎,out𝑏) and 𝐷′𝑃,𝑇[ 𝑎, 𝑏 ] ∶= (𝐷𝑃,𝑇[ 𝑎, 𝑏 ] − 𝑎 + 𝑏)/2

 Hope: 𝐷′�𝑃,𝑇 is permutation matrix Problem: 𝐷′�𝑃,𝑇[ 𝑎, 𝑏 ] not integer

𝐷𝑃,𝑇[ 𝑎, 𝑏 ] = dist(in𝑎,out𝑏) = dist((𝑥𝑎, 𝑦𝑎), (𝑥𝑏, 𝑦𝑏))

= {
|𝑏 − 𝑎| = |𝑥𝑎 − 𝑥𝑏| + |𝑦𝑎 − 𝑦𝑏| if 𝑏 ≤ 𝑎 − |𝑃| or 𝑏 ≥ 𝑎 + |𝑇| (out is left or above of in, no diag edges)
max(|𝑥𝑎 − 𝑥𝑏|, |𝑦𝑎 − 𝑦𝑏|) otherwise (take as many diag’s as possible; save if char’s equal;
− LCS(𝑃𝑎,𝑏, 𝑇𝑎,𝑏) max savings: longest common subseq. (lcs) of corresp. parts of 𝑃/𝑇)

Every character subst. flips parity of dist(in𝑎,out𝑏) “forbid subst’s” / increase cost to 2
in
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0
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6

dist ( in𝑎,out𝑏 ) = |𝑏 − 𝑎|
good (|𝑏 − 𝑎| − 𝑎 + 𝑏 always divisible by 2)
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0
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dist ( in𝑎,out𝑏 ) = max(|𝑥𝑎 − 𝑥𝑏|, |𝑦𝑎 − 𝑦𝑏|) − LCS(𝑃𝑎,𝑏, 𝑇𝑎,𝑏)
red: cost 1 (bad), green: cost 0 (saving of 2, good)
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Substitutions Are Too Cheap!

Define 𝐷𝑃,𝑇[ 𝑎, 𝑏 ] ∶= dist(in𝑎,out𝑏) and 𝐷′𝑃,𝑇[ 𝑎, 𝑏 ] ∶= (𝐷𝑃,𝑇[ 𝑎, 𝑏 ] − 𝑎 + 𝑏)/2

 Hope: 𝐷′�𝑃,𝑇 is permutation matrix Problem: 𝐷′�𝑃,𝑇[ 𝑎, 𝑏 ] not integer

𝐷𝑃,𝑇[ 𝑎, 𝑏 ] = dist(in𝑎,out𝑏) = dist((𝑥𝑎, 𝑦𝑎), (𝑥𝑏, 𝑦𝑏))

= {
|𝑏 − 𝑎| = |𝑥𝑎 − 𝑥𝑏| + |𝑦𝑎 − 𝑦𝑏| if 𝑏 ≤ 𝑎 − |𝑃| or 𝑏 ≥ 𝑎 + |𝑇| (out is left or above of in, no diag edges)
max(|𝑥𝑎 − 𝑥𝑏|, |𝑦𝑎 − 𝑦𝑏|) otherwise (take as many diag’s as possible; save if char’s equal;
− LCS(𝑃𝑎,𝑏, 𝑇𝑎,𝑏) max savings: longest common subseq. (lcs) of corresp. parts of 𝑃/𝑇)

Every character subst. flips parity of dist(in𝑎,out𝑏) “forbid subst’s” / increase cost to 2
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dist ( in𝑎,out𝑏 ) = |𝑏 − 𝑎|
good (|𝑏 − 𝑎| − 𝑎 + 𝑏 always divisible by 2)
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0
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dist ( in𝑎,out𝑏 ) = max(|𝑥𝑎 − 𝑥𝑏|, |𝑦𝑎 − 𝑦𝑏|) − LCS(𝑃𝑎,𝑏, 𝑇𝑎,𝑏)
red: cost 1 (bad), green: cost 0 (saving of 2, good)
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Substitutions Are Too Cheap!

Define 𝐷𝑃,𝑇[ 𝑎, 𝑏 ] ∶= dist(in𝑎,out𝑏) and 𝐷′𝑃,𝑇[ 𝑎, 𝑏 ] ∶= (𝐷𝑃,𝑇[ 𝑎, 𝑏 ] − 𝑎 + 𝑏)/2

 Hope: 𝐷′�𝑃,𝑇 is permutation matrix Problem: 𝐷′�𝑃,𝑇[ 𝑎, 𝑏 ] not integer

𝐷𝑃,𝑇[ 𝑎, 𝑏 ] = dist(in𝑎,out𝑏) = dist((𝑥𝑎, 𝑦𝑎), (𝑥𝑏, 𝑦𝑏))

= {
|𝑏 − 𝑎| = |𝑥𝑎 − 𝑥𝑏| + |𝑦𝑎 − 𝑦𝑏| if 𝑏 ≤ 𝑎 − |𝑃| or 𝑏 ≥ 𝑎 + |𝑇| (out is left or above of in, no diag edges)
max(|𝑥𝑎 − 𝑥𝑏|, |𝑦𝑎 − 𝑦𝑏|) otherwise (take as many diag’s as possible; save if char’s equal;
− LCS(𝑃𝑎,𝑏, 𝑇𝑎,𝑏) max savings: longest common subseq. (lcs) of corresp. parts of 𝑃/𝑇)

Every character subst. flips parity of dist(in𝑎,out𝑏) “forbid subst’s” / increase cost to 2
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0
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dist ( in𝑎,out𝑏 ) = |𝑏 − 𝑎|
good (|𝑏 − 𝑎| − 𝑎 + 𝑏 always divisible by 2)
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0
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dist ( in𝑎,out𝑏 ) = max(|𝑥𝑎 − 𝑥𝑏|, |𝑦𝑎 − 𝑦𝑏|) − LCS(𝑃𝑎,𝑏, 𝑇𝑎,𝑏)
red: cost 1 (bad), green: cost 0 (saving of 2, good)
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The Deletion Distance to the Rescue!
Define 𝐷𝑃,𝑇[ 𝑎, 𝑏 ] ∶= dist(in𝑎,out𝑏) and 𝐷′𝑃,𝑇[ 𝑎, 𝑏 ] ∶= (𝐷𝑃,𝑇[ 𝑎, 𝑏 ] − 𝑎 + 𝑏)/2

 Hope: 𝐷′�𝑃,𝑇 is permutation matrix Problem: 𝐷′�𝑃,𝑇[ 𝑎, 𝑏 ] not integer
Every character subst. flips parity of dist(in𝑎,out𝑏) “forbid subst’s” / increase cost to 2

Deletion Distance (DD)
Min number of insertions or deletions of characters to transform 𝑇 into 𝑃.

Embedding DD into ED
Write 𝑆$ ∶= 𝑆[ 0 ] $ 𝑆[ 1 ] $ ⋯ 𝑆[ |𝑆| ] $. Then DD(𝑃$, 𝑇$) = 2ED(𝑃, 𝑇).

In alignment graph: corresponds to removing all diag edges of weight 1
(and adding vertices/edges corresponding to $)

𝐷𝑃,𝑇[ 𝑎, 𝑏 ] = dist(in𝑎,out𝑏) = dist((𝑥𝑎, 𝑦𝑎), (𝑥𝑏, 𝑦𝑏))

= {
|𝑏 − 𝑎| = |𝑥𝑎 − 𝑥𝑏| + |𝑦𝑎 − 𝑦𝑏| if 𝑏 ≤ 𝑎 − |𝑃| or 𝑏 ≥ 𝑎 + |𝑇| (out is left or above of in, no diag edges)
|𝑥𝑎 − 𝑥𝑏| + |𝑦𝑎 − 𝑦𝑏| otherwise (diag edge only when char’s equal; saves 2 per diag
− 2LCS(𝑃𝑎,𝑏, 𝑇𝑎,𝑏) max savings: longest common subseq. (lcs) of corresp. parts of 𝑃/𝑇)

Philip Wellnitz
From Strings to Seaweeds: Modern Tools for Classical Problems
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The Deletion Distance to the Rescue!
Define 𝐷𝑃,𝑇[ 𝑎, 𝑏 ] ∶= dist(in𝑎,out𝑏) and 𝐷′𝑃,𝑇[ 𝑎, 𝑏 ] ∶= (𝐷𝑃,𝑇[ 𝑎, 𝑏 ] − 𝑎 + 𝑏)/2

 Hope: 𝐷′�𝑃,𝑇 is permutation matrix Problem: 𝐷′�𝑃,𝑇[ 𝑎, 𝑏 ] not integer
Every character subst. flips parity of dist(in𝑎,out𝑏) “forbid subst’s” / increase cost to 2

Deletion Distance (DD)
Min number of insertions or deletions of characters to transform 𝑇 into 𝑃.

Embedding DD into ED
Write 𝑆$ ∶= 𝑆[ 0 ] $ 𝑆[ 1 ] $ ⋯ 𝑆[ |𝑆| ] $. Then DD(𝑃$, 𝑇$) = 2ED(𝑃, 𝑇).

In alignment graph: corresponds to removing all diag edges of weight 1
(and adding vertices/edges corresponding to $)

𝐷𝑃,𝑇[ 𝑎, 𝑏 ] = dist(in𝑎,out𝑏) = dist((𝑥𝑎, 𝑦𝑎), (𝑥𝑏, 𝑦𝑏))

= {
|𝑏 − 𝑎| = |𝑥𝑎 − 𝑥𝑏| + |𝑦𝑎 − 𝑦𝑏| if 𝑏 ≤ 𝑎 − |𝑃| or 𝑏 ≥ 𝑎 + |𝑇| (out is left or above of in, no diag edges)
|𝑥𝑎 − 𝑥𝑏| + |𝑦𝑎 − 𝑦𝑏| otherwise (diag edge only when char’s equal; saves 2 per diag
− 2LCS(𝑃𝑎,𝑏, 𝑇𝑎,𝑏) max savings: longest common subseq. (lcs) of corresp. parts of 𝑃/𝑇)

Philip Wellnitz
From Strings to Seaweeds: Modern Tools for Classical Problems
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The Deletion Distance to the Rescue!
Define 𝐷𝑃,𝑇[ 𝑎, 𝑏 ] ∶= dist(in𝑎,out𝑏) and 𝐷′𝑃,𝑇[ 𝑎, 𝑏 ] ∶= (𝐷𝑃,𝑇[ 𝑎, 𝑏 ] − 𝑎 + 𝑏)/2

 Hope: 𝐷′�𝑃,𝑇 is permutation matrix Problem: 𝐷′�𝑃,𝑇[ 𝑎, 𝑏 ] not integer
Every character subst. flips parity of dist(in𝑎,out𝑏) “forbid subst’s” / increase cost to 2

Deletion Distance (DD)
Min number of insertions or deletions of characters to transform 𝑇 into 𝑃.

Embedding DD into ED
Write 𝑆$ ∶= 𝑆[ 0 ] $ 𝑆[ 1 ] $ ⋯ 𝑆[ |𝑆| ] $. Then DD(𝑃$, 𝑇$) = 2ED(𝑃, 𝑇).

In alignment graph: corresponds to removing all diag edges of weight 1
(and adding vertices/edges corresponding to $)

𝐷𝑃,𝑇[ 𝑎, 𝑏 ] = dist(in𝑎,out𝑏) = dist((𝑥𝑎, 𝑦𝑎), (𝑥𝑏, 𝑦𝑏))

= {
|𝑏 − 𝑎| = |𝑥𝑎 − 𝑥𝑏| + |𝑦𝑎 − 𝑦𝑏| if 𝑏 ≤ 𝑎 − |𝑃| or 𝑏 ≥ 𝑎 + |𝑇| (out is left or above of in, no diag edges)
|𝑥𝑎 − 𝑥𝑏| + |𝑦𝑎 − 𝑦𝑏| otherwise (diag edge only when char’s equal; saves 2 per diag
− 2LCS(𝑃𝑎,𝑏, 𝑇𝑎,𝑏) max savings: longest common subseq. (lcs) of corresp. parts of 𝑃/𝑇)

Philip Wellnitz
From Strings to Seaweeds: Modern Tools for Classical Problems
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The Deletion Distance to the Rescue!
Define 𝐷𝑃,𝑇[ 𝑎, 𝑏 ] ∶= dist(in𝑎,out𝑏) and 𝐷′𝑃,𝑇[ 𝑎, 𝑏 ] ∶= (𝐷𝑃,𝑇[ 𝑎, 𝑏 ] − 𝑎 + 𝑏)/2

 Hope: 𝐷′�𝑃,𝑇 is permutation matrix Problem: 𝐷′�𝑃,𝑇[ 𝑎, 𝑏 ] not integer
Every character subst. flips parity of dist(in𝑎,out𝑏) “forbid subst’s” / increase cost to 2

Deletion Distance (DD)
Min number of insertions or deletions of characters to transform 𝑇 into 𝑃.

Embedding DD into ED
Write 𝑆$ ∶= 𝑆[ 0 ] $ 𝑆[ 1 ] $ ⋯ 𝑆[ |𝑆| ] $. Then DD(𝑃$, 𝑇$) = 2ED(𝑃, 𝑇).

In alignment graph: corresponds to removing all diag edges of weight 1
(and adding vertices/edges corresponding to $)

𝐷𝑃,𝑇[ 𝑎, 𝑏 ] = dist(in𝑎,out𝑏) = dist((𝑥𝑎, 𝑦𝑎), (𝑥𝑏, 𝑦𝑏))

= {
|𝑏 − 𝑎| = |𝑥𝑎 − 𝑥𝑏| + |𝑦𝑎 − 𝑦𝑏| if 𝑏 ≤ 𝑎 − |𝑃| or 𝑏 ≥ 𝑎 + |𝑇| (out is left or above of in, no diag edges)
|𝑥𝑎 − 𝑥𝑏| + |𝑦𝑎 − 𝑦𝑏| otherwise (diag edge only when char’s equal; saves 2 per diag
− 2LCS(𝑃𝑎,𝑏, 𝑇𝑎,𝑏) max savings: longest common subseq. (lcs) of corresp. parts of 𝑃/𝑇)

Philip Wellnitz
From Strings to Seaweeds: Modern Tools for Classical Problems
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The Deletion Distance to the Rescue!
Define 𝐷𝑃,𝑇[ 𝑎, 𝑏 ] ∶= dist(in𝑎,out𝑏) and 𝐷′𝑃,𝑇[ 𝑎, 𝑏 ] ∶= (𝐷𝑃,𝑇[ 𝑎, 𝑏 ] − 𝑎 + 𝑏)/2

 Hope: 𝐷′�𝑃,𝑇 is permutation matrix Problem: 𝐷′�𝑃,𝑇[ 𝑎, 𝑏 ] not integer
Every character subst. flips parity of dist(in𝑎,out𝑏) “forbid subst’s” / increase cost to 2

Deletion Distance (DD)
Min number of insertions or deletions of characters to transform 𝑇 into 𝑃.

Embedding DD into ED
Write 𝑆$ ∶= 𝑆[ 0 ] $ 𝑆[ 1 ] $ ⋯ 𝑆[ |𝑆| ] $. Then DD(𝑃$, 𝑇$) = 2ED(𝑃, 𝑇).

In alignment graph: corresponds to removing all diag edges of weight 1
(and adding vertices/edges corresponding to $)

𝐷𝑃,𝑇[ 𝑎, 𝑏 ] = dist(in𝑎,out𝑏) = dist((𝑥𝑎, 𝑦𝑎), (𝑥𝑏, 𝑦𝑏))

= {
|𝑏 − 𝑎| = |𝑥𝑎 − 𝑥𝑏| + |𝑦𝑎 − 𝑦𝑏| if 𝑏 ≤ 𝑎 − |𝑃| or 𝑏 ≥ 𝑎 + |𝑇| (out is left or above of in, no diag edges)
|𝑥𝑎 − 𝑥𝑏| + |𝑦𝑎 − 𝑦𝑏| otherwise (diag edge only when char’s equal; saves 2 per diag
− 2LCS(𝑃𝑎,𝑏, 𝑇𝑎,𝑏) max savings: longest common subseq. (lcs) of corresp. parts of 𝑃/𝑇)

Philip Wellnitz
From Strings to Seaweeds: Modern Tools for Classical Problems
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The Deletion Distance to the Rescue!—Recap

Main Result
Consider (deletion distance) alignment graph of 𝑃$ and 𝑇$;

define 𝐷𝑃$,𝑇$[ 𝑎, 𝑏 ] ∶= dist(in𝑎,out𝑏) and 𝐷′𝑃$,𝑇$[ 𝑎, 𝑏 ] ∶= (𝐷𝑃$,𝑇$[ 𝑎, 𝑏 ] − 𝑎 + 𝑏)/2.
Then, 𝐷′�𝑃$,𝑇$ is a permutation matrix.

Can (easily) show: (min, +)-product of 𝐷′𝑃$,𝑇$ matrices (“stitching”) yields deletion
distances for concatenated strings
 Can use seaweed product for fast computation
Some technicalities (skipped):

stitching requires some overlap in at least one string
want to compute only ≈ 𝑘 diagonals; requires a “restriction” operation
formally defining the object we use to represent pairs of strings in DPM
…

Philip Wellnitz
From Strings to Seaweeds: Modern Tools for Classical Problems
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The Deletion Distance to the Rescue!—Recap

Main Result
Consider (deletion distance) alignment graph of 𝑃$ and 𝑇$;

define 𝐷𝑃$,𝑇$[ 𝑎, 𝑏 ] ∶= dist(in𝑎,out𝑏) and 𝐷′𝑃$,𝑇$[ 𝑎, 𝑏 ] ∶= (𝐷𝑃$,𝑇$[ 𝑎, 𝑏 ] − 𝑎 + 𝑏)/2.
Then, 𝐷′�𝑃$,𝑇$ is a permutation matrix.

Can (easily) show: (min, +)-product of 𝐷′𝑃$,𝑇$ matrices (“stitching”) yields deletion
distances for concatenated strings
 Can use seaweed product for fast computation
Some technicalities (skipped):

stitching requires some overlap in at least one string
want to compute only ≈ 𝑘 diagonals; requires a “restriction” operation
formally defining the object we use to represent pairs of strings in DPM
…

Philip Wellnitz
From Strings to Seaweeds: Modern Tools for Classical Problems
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Using Dynamic Puzzle Matching

Dynamic Puzzle Matching [CKoW’22]

Input: integer 𝑘, family F of strings w/ special string 𝑄, s.t. ∑𝐹∈F ED(𝐹, 𝑄) = 𝑂(𝑘).

Maintain: sequence 𝐼 = (𝑈1, 𝑉1) ⋯ (𝑈𝑧, 𝑉𝑧) of pairs from F2

Updates: Insertions and Deletions of pairs in 𝐼
Queries: Compute 𝑘-edit occ’s of 𝑈1⋯𝑈𝑧 in 𝑉1⋯𝑉𝑧

Main Result: After �̃�(𝑘3) preprocessing, updates and queries in time �̃�(𝑘)

General Idea
1 Store edit distance information for each pair (𝑈𝑖, 𝑉𝑖)
 Seaweed/permutation matrix of (𝑈𝑖, 𝑉𝑖) allow this in 𝑂(𝑘) space

2 In preprocessing, build matrix for every possible pair of strings from family F
3 Use seaweed product of [Tis’07,’15] to compose the information of different pairs
�̃�(𝑘) per stitch

4 Use BST on top to support update queries

Philip Wellnitz
From Strings to Seaweeds: Modern Tools for Classical Problems
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Adding Weights

What about the weighted setting?

Philip Wellnitz
From Strings to Seaweeds: Modern Tools for Classical Problems
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Adding Weights

What about the weighted setting?

—Cole, Hariharan, 2002

Philip Wellnitz
From Strings to Seaweeds: Modern Tools for Classical Problems
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Background

Edit Distance ED(𝑋, 𝑌)

Min number of character insertions, deletions, and substitutions that transform 𝑋 to 𝑌

o p i n i o n

0 p i n 1 c i v

p i c n i c

o p i n 1 c i v0

ED(0PIN1CIV,OPINION) = 5 ED(0PIN1CIV,PICNIC) = 5

Philip Wellnitz
From Strings to Seaweeds: Modern Tools for Classical Problems



61-1

Background

Weighted Edit Distance ED𝑤(𝑋, 𝑌)

Min cost of transforming 𝑋 to 𝑌 using character edits, where:
inserting 𝑦 costs 𝑤(𝜀, 𝑦); deleting 𝑥 costs 𝑤(𝑥, 𝜀);

substituting 𝑥 for 𝑦 costs 𝑤(𝑥, 𝑦).

𝑤(0,O) ∶= 1 𝑤(1,I) ∶= 1 𝑤(C,O) ∶= 1 𝑤(∗, ∗) ∶= 2 𝑤(∗, 𝜀) ∶= 1 𝑤(𝜀, ∗) ∶= 10

o p i n i o n

0 p i n 1 c i v

p i c n i c

o p i n 1 c i v0

Philip Wellnitz
From Strings to Seaweeds: Modern Tools for Classical Problems
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Background

Weighted Edit Distance ED𝑤(𝑋, 𝑌)

Min cost of transforming 𝑋 to 𝑌 using character edits, where:
inserting 𝑦 costs 𝑤(𝜀, 𝑦); deleting 𝑥 costs 𝑤(𝑥, 𝜀);

substituting 𝑥 for 𝑦 costs 𝑤(𝑥, 𝑦).

𝑤(0,O) ∶= 1 𝑤(1,I) ∶= 1 𝑤(C,O) ∶= 1 𝑤(∗, ∗) ∶= 2 𝑤(∗, 𝜀) ∶= 1 𝑤(𝜀, ∗) ∶= 10

o p i n i o n

0 p i n 1 c i v

p i c n i c

o p i n 1 c i v0

ED𝑤(0PIN1CIV,OPINION) = 6 ED𝑤(0PIN1CIV,PICNIC) ≤ 14

Philip Wellnitz
From Strings to Seaweeds: Modern Tools for Classical Problems
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Background

Weighted Edit Distance ED𝑤(𝑋, 𝑌)

Min cost of transforming 𝑋 to 𝑌 using character edits, where:
inserting 𝑦 costs 𝑤(𝜀, 𝑦); deleting 𝑥 costs 𝑤(𝑥, 𝜀);

substituting 𝑥 for 𝑦 costs 𝑤(𝑥, 𝑦).

𝑤(0,O) ∶= 1 𝑤(1,I) ∶= 1 𝑤(C,O) ∶= 1 𝑤(∗, ∗) ∶= 2 𝑤(∗, 𝜀) ∶= 1 𝑤(𝜀, ∗) ∶= 10

o p i n i o n

0 p i n 1 c i v

p i c n i c

o p i n 1 c i v0

ED𝑤(0PIN1CIV,OPINION) = 6 ED𝑤(0PIN1CIV,PICNIC) = 8

Philip Wellnitz
From Strings to Seaweeds: Modern Tools for Classical Problems
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Computing (Weighted) Edit Distance

How fast can we compute the (weighted) edit distance of two strings?

 𝑂(𝑛2) (recalled this earlier!)

Philip Wellnitz
From Strings to Seaweeds: Modern Tools for Classical Problems
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Computing (Weighted) Edit Distance

How fast can we compute the (weighted) edit distance of two strings?

 𝑂(𝑛2) (recalled this earlier!)

For Pattern Matching, enough to compute (weighted) edit distance if small (at most 𝑘)

Philip Wellnitz
From Strings to Seaweeds: Modern Tools for Classical Problems
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Computing (Weighted) Edit Distance

How fast can we compute the (weighted) edit distance of two strings?

 𝑂(𝑛2) (recalled this earlier!)

For Pattern Matching, enough to compute (weighted) edit distance if small (at most 𝑘)

 Bounded (Weighted) Edit Distance

Philip Wellnitz
From Strings to Seaweeds: Modern Tools for Classical Problems
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Algorithms for (Bounded) Edit Distance

𝑂(𝑛2), [Vin68,NW70,Sel74,WF74]

𝑘 ≈
1

𝑘 ≈
𝑛

◷(𝑛, 𝑘) ≈ 𝑛

◷(𝑛, 𝑘) ≈ 𝑛2

“almost equal” “completely different”

“fast”

“slow”

“fast”

“slow”

Existing algorithms for Edit Distance ED(𝑋, 𝑌), where |𝑋|, |𝑌| ≤ 𝑛

Philip Wellnitz
From Strings to Seaweeds: Modern Tools for Classical Problems
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Algorithms for (Bounded) Edit Distance

𝑂(
𝑛 +
𝑘2
) [L

V8
8]

𝑂(𝑛2), [Vin68,NW70,Sel74,WF74]

𝑂(𝑛
𝑘),

[Uk
k85

,My
e86

]

𝑘 ≈
1

𝑘 ≈
𝑛
1/
2

𝑘 ≈
𝑛

◷(𝑛, 𝑘) ≈ 𝑛

◷(𝑛, 𝑘) ≈ 𝑛2

“almost equal” “completely different”

“fast”

“slow”

“fast”

“slow”

Existing algorithms for Edit Distance ED(𝑋, 𝑌), where |𝑋|, |𝑌| ≤ 𝑛

Philip Wellnitz
From Strings to Seaweeds: Modern Tools for Classical Problems
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Algorithms for (Bounded) Edit Distance

𝑂(
𝑛 +
𝑘2
) [L

V8
8]

Ω(
𝑛 +
𝑘2
) [B

I18
]

𝑂(𝑛2), [Vin68,NW70,Sel74,WF74]

𝑂(𝑛
𝑘),

[Uk
k85

,My
e86

]

𝑘 ≈
1

𝑘 ≈
𝑛
1/
2

𝑘 ≈
𝑛

◷(𝑛, 𝑘) ≈ 𝑛

◷(𝑛, 𝑘) ≈ 𝑛2

“almost equal” “completely different”

“fast”

“slow”

“fast”

“slow”

Existing algorithms for Edit Distance ED(𝑋, 𝑌), where |𝑋|, |𝑌| ≤ 𝑛

Philip Wellnitz
From Strings to Seaweeds: Modern Tools for Classical Problems



64-1

Algorithms for (Bounded) Weighted Edit Distance

What about Weighted Edit Distance?

Philip Wellnitz
From Strings to Seaweeds: Modern Tools for Classical Problems
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Algorithms for (Bounded) Weighted Edit Distance

𝑂(
𝑛 +
𝑘2
) [L

V8
8]

Ω(
𝑛 +
𝑘2
) [B

I18
]

𝑂(𝑛2), [Vin68,NW70,Sel74,WF74]

𝑂(𝑛
𝑘),

[Uk
k85

,My
e86

]

𝑘 ≈
1

𝑘 ≈
𝑛
1/
2

𝑘 ≈
𝑛

◷(𝑛, 𝑘) ≈ 𝑛

◷(𝑛, 𝑘) ≈ 𝑛2

“almost equal” “completely different”

“fast”

“slow”

“fast”

“slow”

Existing algorithms for Weighted Edit Distance ED𝑤(𝑋, 𝑌), where |𝑋|, |𝑌| ≤ 𝑛

Philip Wellnitz
From Strings to Seaweeds: Modern Tools for Classical Problems
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Algorithms for (Bounded) Weighted Edit Distance

𝑂(
𝑛 +
𝑘2
) [L

V8
8]

Ω(
𝑛 +
𝑘2
) [B

I18
]

𝑂(𝑛2), [Vin68,NW70,Sel74,WF74]

𝑂(𝑛
𝑘),

[Uk
k85

,My
e86

]

𝑂(
𝑛
+ 𝑘

5 ),
[D
GH

KS
23
]

𝑘 ≈
1

𝑘 ≈
𝑛
1/
5

𝑘 ≈
𝑛
1/
4

𝑘 ≈
𝑛
1/
2

𝑘 ≈
𝑛

◷(𝑛, 𝑘) ≈ 𝑛

◷(𝑛, 𝑘) ≈ 𝑛5/4

◷(𝑛, 𝑘) ≈ 𝑛2

“almost equal” “completely different”

“fast”

“slow”

“fast”

“slow”

Existing algorithms for Weighted Edit Distance ED𝑤(𝑋, 𝑌), where |𝑋|, |𝑌| ≤ 𝑛

Philip Wellnitz
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Algorithms for (Bounded) Weighted Edit Distance

�̃�(
𝑛 +
√𝑘
3 𝑛)

, T
his

wo
rk

𝑂(
𝑛 +
𝑘2
) [L

V8
8]

Ω(
𝑛 +
𝑘2
) [B

I18
]

𝑂(𝑛2), [Vin68,NW70,Sel74,WF74]

𝑂(𝑛
𝑘),

[Uk
k85

,My
e86

]

𝑂(
𝑛
+ 𝑘

5 ),
[D
GH

KS
23
]

𝑘 ≈
1

𝑘 ≈
𝑛
1/
5

𝑘 ≈
𝑛
1/
4

𝑘 ≈
𝑛
1/
3

𝑘 ≈
𝑛
1/
2

𝑘 ≈
𝑛

◷(𝑛, 𝑘) ≈ 𝑛

◷(𝑛, 𝑘) ≈ 𝑛5/4

◷(𝑛, 𝑘) ≈ 𝑛2

“almost equal” “completely different”

“fast”

“slow”

“fast”

“slow”

Existing algorithms for Weighted Edit Distance ED𝑤(𝑋, 𝑌), where |𝑋|, |𝑌| ≤ 𝑛

Philip Wellnitz
From Strings to Seaweeds: Modern Tools for Classical Problems
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Algorithms for (Bounded) Weighted Edit Distance

�̃�(
𝑛 +
√𝑘
3 𝑛)

, T
his

wo
rk

Ω(
𝑛 +
√𝑘
3 𝑛)

, T
his

wo
rk

Ω(
𝑛
+ 𝑘

2.5
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Existing algorithms for Weighted Edit Distance ED𝑤(𝑋, 𝑌), where |𝑋|, |𝑌| ≤ 𝑛
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Main Results

Main Theorem 1 (Upper Bound) [CaKoW’23]

Strings 𝑋, 𝑌 each of length at most 𝑛
Oracle access to (normalized) weight function 𝑤

Can compute 𝑘 = ED𝑤(𝑋, 𝑌) in time 𝑂(𝑛 + √𝑛𝑘3 log3 𝑛)

Main Theorem 2 (Lower Bound) [CaKoW’23]

Assuming the apsp Hypothesis and for √𝑛 ≤ 𝑘 ≤ 𝑛,
Main Theorem 1 is tight (up to 𝑛𝑜(1)-factors)
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Tool 0: Unweighted ED and [DGHKS23]-Kernel

Bounded Weighted Edit Distance ED
𝑤
≤𝑘(𝑋, 𝑌)

Min cost of transforming 𝑋 to 𝑌 using character edits (if it is at most 𝑘), where:
inserting 𝑦 costs 𝑤(𝜀, 𝑦); deleting 𝑥 costs 𝑤(𝑥, 𝜀); substituting 𝑥 for 𝑦 costs 𝑤(𝑥, 𝑦).
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Tool 0: Unweighted ED and [DGHKS23]-Kernel

Bounded Weighted Edit Distance ED
𝑤
≤𝑘(𝑋, 𝑌)

Min cost of transforming 𝑋 to 𝑌 using character edits (if it is at most 𝑘), where:
inserting 𝑦 costs 𝑤(𝜀, 𝑦); deleting 𝑥 costs 𝑤(𝑥, 𝜀); substituting 𝑥 for 𝑦 costs 𝑤(𝑥, 𝑦).

Justified Assumption: 𝑤 is normalized, 𝑤(𝑥, 𝑦) ≥ 1 for all 𝑥 ≠ 𝑦.
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Tool 0: Unweighted ED and [DGHKS23]-Kernel

Bounded Weighted Edit Distance ED
𝑤
≤𝑘(𝑋, 𝑌)

Min cost of transforming 𝑋 to 𝑌 using character edits (if it is at most 𝑘), where:
inserting 𝑦 costs 𝑤(𝜀, 𝑦); deleting 𝑥 costs 𝑤(𝑥, 𝜀); substituting 𝑥 for 𝑦 costs 𝑤(𝑥, 𝑦).

Justified Assumption: 𝑤 is normalized, 𝑤(𝑥, 𝑦) ≥ 1 for all 𝑥 ≠ 𝑦.
 Have (via 𝑂(𝑛 + 𝑘2) algo): Alignment 𝐴 ∶ 𝑋 𝑌 of unweighted cost ≤ 𝑘
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Tool 0: Unweighted ED and [DGHKS23]-Kernel

Bounded Weighted Edit Distance ED
𝑤
≤𝑘(𝑋, 𝑌)

Min cost of transforming 𝑋 to 𝑌 using character edits (if it is at most 𝑘), where:
inserting 𝑦 costs 𝑤(𝜀, 𝑦); deleting 𝑥 costs 𝑤(𝑥, 𝜀); substituting 𝑥 for 𝑦 costs 𝑤(𝑥, 𝑦).

Justified Assumption: 𝑤 is normalized, 𝑤(𝑥, 𝑦) ≥ 1 for all 𝑥 ≠ 𝑦.
 Have (via 𝑂(𝑛 + 𝑘2) algo): Alignment 𝐴 ∶ 𝑋 𝑌 of unweighted cost ≤ 𝑘
 𝐴 aligns edit-free most of 𝑋 with 𝑌 [DGHKS23]

Philip Wellnitz
From Strings to Seaweeds: Modern Tools for Classical Problems



66-5

Tool 0: Unweighted ED and [DGHKS23]-Kernel

Bounded Weighted Edit Distance ED
𝑤
≤𝑘(𝑋, 𝑌)

Min cost of transforming 𝑋 to 𝑌 using character edits (if it is at most 𝑘), where:
inserting 𝑦 costs 𝑤(𝜀, 𝑦); deleting 𝑥 costs 𝑤(𝑥, 𝜀); substituting 𝑥 for 𝑦 costs 𝑤(𝑥, 𝑦).

Justified Assumption: 𝑤 is normalized, 𝑤(𝑥, 𝑦) ≥ 1 for all 𝑥 ≠ 𝑦.
 Have (via 𝑂(𝑛 + 𝑘2) algo): Alignment 𝐴 ∶ 𝑋 𝑌 of unweighted cost ≤ 𝑘
 𝐴 aligns edit-free most of 𝑋 with 𝑌 [DGHKS23]

Theorem (Universal Kernel) [DGHKS23]

Can trim 𝑋 and 𝑌 to length-𝑂(𝑘4) strings 𝑋′, 𝑌 ′ with ED
𝑤
≤𝑘(𝑋, 𝑌) = ED

𝑤
≤𝑘(𝑋′, 𝑌 ′).
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Tool 0: Unweighted ED and [DGHKS23]-Kernel

Bounded Weighted Edit Distance ED
𝑤
≤𝑘(𝑋, 𝑌)

Min cost of transforming 𝑋 to 𝑌 using character edits (if it is at most 𝑘), where:
inserting 𝑦 costs 𝑤(𝜀, 𝑦); deleting 𝑥 costs 𝑤(𝑥, 𝜀); substituting 𝑥 for 𝑦 costs 𝑤(𝑥, 𝑦).

Justified Assumption: 𝑤 is normalized, 𝑤(𝑥, 𝑦) ≥ 1 for all 𝑥 ≠ 𝑦.
 Have (via 𝑂(𝑛 + 𝑘2) algo): Alignment 𝐴 ∶ 𝑋 𝑌 of unweighted cost ≤ 𝑘
 𝐴 aligns edit-free most of 𝑋 with 𝑌 [DGHKS23]

Theorem (Universal Kernel) [DGHKS23]

Can trim 𝑋 and 𝑌 to length-𝑂(𝑘4) strings 𝑋′, 𝑌 ′ with ED
𝑤
≤𝑘(𝑋, 𝑌) = ED

𝑤
≤𝑘(𝑋′, 𝑌 ′).

𝑋′ and 𝑌 ′ consist in 𝑂(𝑘2) pieces of length 𝑂(𝑘2) and with period 𝑂(𝑘) each
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Tool 1: Alignment Graphs and Multiple-Source Shortest Path

𝑋 and 𝑌 consist in 𝑂(𝑘2) pieces of length 𝑂(𝑘2) and with period 𝑂(𝑘) each
Idea: Use (directed) alignment graph AG of 𝑋 and 𝑌 (seaweeds don’t work here)

Idea2: Trim AG to 𝑂(𝑘) diagonals ED
𝑤
≤𝑘(𝑋, 𝑌) is distance (0, 0) (|𝑋|, |𝑌|)

Idea3: Split AG according to structure of 𝑋 and 𝑌
Compute all b-to-b dist [Klein05] + stitch together results ((min, +)-product [SMAWK87])
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Tool 1: Alignment Graphs and Multiple-Source Shortest Path

𝑋 and 𝑌 consist in 𝑂(𝑘2) pieces of length 𝑂(𝑘2) and with period 𝑂(𝑘) each
Idea: Use (directed) alignment graph AG of 𝑋 and 𝑌 (seaweeds don’t work here)
 ED𝑤(𝑋, 𝑌) is distance (0, 0) (|𝑋|, |𝑌|)
Idea2: Trim AG to 𝑂(𝑘) diagonals ED

𝑤
≤𝑘(𝑋, 𝑌) is distance (0, 0) (|𝑋|, |𝑌|)

Idea3: Split AG according to structure of 𝑋 and 𝑌
Compute all b-to-b dist [Klein05] + stitch together results ((min, +)-product [SMAWK87])
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Tool 1: Alignment Graphs and Multiple-Source Shortest Path

𝑋 and 𝑌 consist in 𝑂(𝑘2) pieces of length 𝑂(𝑘2) and with period 𝑂(𝑘) each
Idea: Use (directed) alignment graph AG of 𝑋 and 𝑌 (seaweeds don’t work here)
 ED𝑤(𝑋, 𝑌) is distance (0, 0) (|𝑋|, |𝑌|)
Idea2: Trim AG to 𝑂(𝑘) diagonals ED

𝑤
≤𝑘(𝑋, 𝑌) is distance (0, 0) (|𝑋|, |𝑌|)

Idea3: Split AG according to structure of 𝑋 and 𝑌
Compute all b-to-b dist [Klein05] + stitch together results ((min, +)-product [SMAWK87])
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Tool 1: Alignment Graphs and Multiple-Source Shortest Path

𝑋 and 𝑌 consist in 𝑂(𝑘2) pieces of length 𝑂(𝑘2) and with period 𝑂(𝑘) each
Idea: Use (directed) alignment graph AG of 𝑋 and 𝑌 (seaweeds don’t work here)
 ED𝑤(𝑋, 𝑌) is distance (0, 0) (|𝑋|, |𝑌|)
Idea2: Trim AG to 𝑂(𝑘) diagonals ED

𝑤
≤𝑘(𝑋, 𝑌) is distance (0, 0) (|𝑋|, |𝑌|)

 AG has 𝑂(𝑘5) vertices Dijkstra yields �̃�(𝑘5) algo
Idea3: Split AG according to structure of 𝑋 and 𝑌
Compute all b-to-b dist [Klein05] + stitch together results ((min, +)-product [SMAWK87])
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Tool 1: Alignment Graphs and Multiple-Source Shortest Path

𝑋 and 𝑌 consist in 𝑂(𝑘2) pieces of length 𝑂(𝑘2) and with period 𝑂(𝑘) each
Idea: Use (directed) alignment graph AG of 𝑋 and 𝑌 (seaweeds don’t work here)
 ED𝑤(𝑋, 𝑌) is distance (0, 0) (|𝑋|, |𝑌|)
Idea2: Trim AG to 𝑂(𝑘) diagonals ED

𝑤
≤𝑘(𝑋, 𝑌) is distance (0, 0) (|𝑋|, |𝑌|)

Idea3: Split AG according to structure of 𝑋 and 𝑌
Compute all b-to-b dist [Klein05] + stitch together results ((min, +)-product [SMAWK87])
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Tool 1: Alignment Graphs and Multiple-Source Shortest Path

𝑋 and 𝑌 consist in 𝑂(𝑘2) pieces of length 𝑂(𝑘2) and with period 𝑂(𝑘) each
Idea: Use (directed) alignment graph AG of 𝑋 and 𝑌 (seaweeds don’t work here)
 ED𝑤(𝑋, 𝑌) is distance (0, 0) (|𝑋|, |𝑌|)
Idea2: Trim AG to 𝑂(𝑘) diagonals ED

𝑤
≤𝑘(𝑋, 𝑌) is distance (0, 0) (|𝑋|, |𝑌|)

Idea3: Split AG according to structure of 𝑋 and 𝑌
Compute all b-to-b dist [Klein05] + stitch together results ((min, +)-product [SMAWK87])
 𝑘2 ⋅ �̃�(𝑘3) for periodic pieces + 𝑘2 ⋅ �̃�(𝑘2) for stitching
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Tool 1: Alignment Graphs and Multiple-Source Shortest Path

𝑋 and 𝑌 consist in 𝑂(𝑘2) pieces of length 𝑂(𝑘2) and with period 𝑂(𝑘) each
Idea: Use (directed) alignment graph AG of 𝑋 and 𝑌 (seaweeds don’t work here)
 ED𝑤(𝑋, 𝑌) is distance (0, 0) (|𝑋|, |𝑌|)
Idea2: Trim AG to 𝑂(𝑘) diagonals ED

𝑤
≤𝑘(𝑋, 𝑌) is distance (0, 0) (|𝑋|, |𝑌|)

Idea3: Split AG according to structure of 𝑋 and 𝑌
Compute all b-to-b dist [Klein05] + stitch together results ((min, +)-product [SMAWK87])
for periodic pieces: fast exponentiation;
 𝑘2 ⋅ �̃�(𝑘2) for periodic pieces + 𝑘2 ⋅ �̃�(𝑘2) for stitching
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Tool 2: Divide and Conquer

𝑋 and 𝑌 consist in 𝑂(𝑘2) periodic pieces of length 𝑂(𝑘2) and with period 𝑂(𝑘) each
Idea: Use AG, trimmed to 𝑂(𝑘) diags ED

𝑤
≤𝑘(𝑋, 𝑌) is distance (0, 0) (|𝑋|, |𝑌|)

Idea3: Compute all b-to-b dist for periodic pieces [Klein05] + fast exponentiation;
stitch together results using min-plus product [SMAWK87]

Idea4: Use Divide-and-Conquer to reduce number of periodic pieces to 𝑂(𝑘)
 𝑘 ⋅ �̃�(𝑘2) for periodic pieces (and padding) + 𝑘 ⋅ �̃�(𝑘2) for stitching
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Tool 2: Divide and Conquer

𝑋 and 𝑌 consist in 𝑂(𝑘2) periodic pieces of length 𝑂(𝑘2) and with period 𝑂(𝑘) each
Idea: Use AG, trimmed to 𝑂(𝑘) diags ED

𝑤
≤𝑘(𝑋, 𝑌) is distance (0, 0) (|𝑋|, |𝑌|)

Idea3: Compute all b-to-b dist for periodic pieces [Klein05] + fast exponentiation;
stitch together results using min-plus product [SMAWK87]

Idea4: Use Divide-and-Conquer to reduce number of periodic pieces to 𝑂(𝑘)
 𝑘 ⋅ �̃�(𝑘2) for periodic pieces (and padding) + 𝑘 ⋅ �̃�(𝑘2) for stitching
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Tool 3: Compressibility instead of Periodicity

𝑋 and 𝑌 consist in 𝑂(𝑘) pieces of length 𝑂(𝑘2) each
Idea: Use AG, trimmed to 𝑂(𝑘) diags ED

𝑤
≤𝑘(𝑋, 𝑌) is distance (0, 0) (|𝑋|, |𝑌|)

Idea3: Compute all b-to-b dist for periodic pieces [Klein05] + fast exponentiation;
stitch together results using min-plus product [SMAWK87]

Idea4: Use Divide-and-Conquer to reduce number of periodic pieces to 𝑂(𝑘)

Idea5: Use tailor-made compressibility measure instead of periodicity
+ (w)ED algorithms for compressed strings
 �̃�(𝑛 + √𝑘3𝑛) time in total
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Main Results

Main Theorem 1 (Upper Bound)
Strings 𝑋, 𝑌 each of length at most 𝑛

Oracle access to (normalized) weight function 𝑤
Can compute 𝑘 = ED𝑤(𝑋, 𝑌) in time 𝑂(𝑛 + √𝑛𝑘3 log3 𝑛)

Main Theorem 2 (Lower Bound)
Assuming the apsp Hypothesis and for √𝑛 ≤ 𝑘 ≤ 𝑛,

Main Theorem 1 is tight (up to 𝑛𝑜(1)-factors)
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Pattern Matching with Weighted Edits—Next Steps

Have good algorithm for Bounded Weighted Edit Distance
(ongoing work) Use structural result and directed alignment graph for
�̃�(|𝑇| + 𝑘4|𝑇|/|𝑃|) for PM w/ WE
Seaweeds don’t help,
but fast multiplication of Monge Matrices still does (at a cost of an extra 𝑂(𝑘))

Still need to solve a lot of extra technical challenges
(actually obtaining an analogue of [LV89] for verifying starting positions; need to
generalize DPM; …)
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Summary and Future Directions

Main Results of today
Structural characterization of strings and PM w/ Edits
Main tools required for �̃�(|𝑇| + 𝑘3.5|𝑇|/|𝑃|) algo for PM w/ E
Some ideas of how to generalize to the weighted setting

Big Open Questions
PM w/ Edits in 𝑜(|𝑇| + 𝑘3 ⋅ |𝑇|/|𝑃|)
PM w/ Weighted Edits in 𝑜(|𝑇| + 𝑘4 ⋅ |𝑇|/|𝑃|)
Better algorithms known for small integer weights [GK24+], might give better PM
algos in that setting
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